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KINEMATIC CONTROL OF A BIOMIMETIC ROBOT ARM THROUGH

MOTION CAPTURE AND INVERSE KINEMATICS FOR TELEROBOTIC

APPLICATIONS

Abstract

In this study, two control strategies to drive an 8-DoF biomimetic robot arm are im-

plemented using motion capture technology and inverse kinematics to help reproduce

the desired actions given by the human operator or to generate new human-like mo-

tion to interact physically with objects in the environment placed at a certain distance.

First, the kinematics of the human upper limb while performing random arm motion

are investigated and modeled within a game engine. Then, using this information, the

solution for the inverse kinematics problem for the robot arm is implemented within the

game engine to position the end-effector in the three-dimensional space using human-

like joint configurations. Second, the human motion is analyzed and recorded using a

motion capture system and later, applied onto the humanoid robot arm. By performing

real experiments using this arm as a platform, it was proved that the above-mentioned

control strategies result in human-like upper limb motion. The proposed telerobotic

system is integrated with a user-friendly interface using Blender Game Engine for hu-

man–machine interaction purposes. Finally, a series of experiments with different con-

trol strategies are conducted on the robotic system successfully and the experimental

results are presented and discussed. The biomimetic robot design and control strategies

makes it highly suitable for telerobotic medical and surgical applications in the future.
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CHAPTER 1

INTRODUCTION

Telerobotic devices are developed for environments that are dangerous, uncomfort-

able, limiting, repetitive, or costly for humans to perform [10]. These remote manipu-

lators are nowadays commonly used for inspection, maintenance, search and recovery,

waste management and to handle radioactive materials in nuclear power plants. In addi-

tion, they have been proposed to support medical staff and enabling doctors to perform

surgeries and various medical check-ups in remote locations. However, teleoperation of

such devices to perform tasks becomes increasingly complex as, in most of these cases,

the robots are remotely controlled. Furthermore, the control interface systems should

be as intuitive as possible to the operator. In these remote scenarios, the operator gives

the body motion (arm motion) which the robotic arm would replicate to accomplish a

certain task. Through addition of visual and tactile feedback, useful information from

the surroundings of the telerobotic device can help enhance the operator perception and

aid task completion [11]. The goal of telerobotics is to allow a human to control a robot

in a situation where it is inconvenient or unsafe for a human and difficult to program a

robot to autonomously perform complex operations.

In certain complex industrial tasks, stable, fast and accurate robot positioning is re-

quired, while in a number of nonindustrial tasks (e.g. robotic-assisted surgery) dexter-

ity and intelligent positioning is required to avoid obstacles [12], joint limits or singular
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configurations. For all these reasons, redundant robots have received increased attention

during the last decades, along with their associated problem of complex kinematics.

Therefore, dexterous 7-DOF arms are ideally suited for a variety of robotic tasks

that include, but are not limited to:

• Inspection, maintenance, and servicing operations

• Assembly and disassembly in space

• Construction of habitats and other structures

• Instrument placement in hard-to-reach locations

• Sampling and sample-transfer operations

A redundant robotic arm consists of more degrees of freedom (DoF) than required to

achieve a particular end effector configuration and its kinematic control involves setting

of a desired end-effector trajectory in the task space and then computing the respective

joint angle trajectories such that the robotic manipulator completes a certain task [13].

Moreover, it is important to understand that the redundancy factor of the robotic arm

depends on the particular type of task to be executed where the number of variables

which identify the task are lesser than the number of active joints. For instance, a 3-

DoF planar manipulator becomes redundant if the tip orientation angle is of no concern

for a two-dimensional motion task. In a non redundant robotic manipulator, a given

position and orientation of the end-effector corresponds to a finite set of joint angles

and associated robot configurations with distinct poses. Therefore, given a trajectory

and an end-effector, the motion of the robot is uniquely determined. However, when

this motion is hindered due to the presence of obstacles, or reaching the joint limits,

there are no available degrees of freedom to reconfigure the robot to reach the desired

pose around the obstacles [14].
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So, the extra degrees of freedom yields increased dexterity and versatility for per-

forming a task due to the infinite number of joint motions which result in the same end-

effector trajectory. However, the increased capability and dexterity of these arms also

makes them harder to control. In order to exploit the capabilities of redundant manip-

ulators, effective control schemes are needed to be developed to utilize the redundancy

in some useful manner. During recent years, several methods have been suggested to

resolve the redundancy problem of manipulators. Thus, the arm can be reconfigured to

find better postures for an assigned set of task requirements.

In recent years, many researchers have devoted their attention to creating a teleoper-

ation system with high dexterity that gives the overall system operator-centered control

and intuitive feedback. The robotic arm, one of the robotic parts which consists of a set

of rigid bodies or links connected by means of revolute or prismatic joints integrating a

kinematic chain, is widely used for several fields including telerobotics and in medical

rehabilitation to assist a disabled people.

However, during the design of an anthropomorphic human arm most of the salient

features of the human arm are lost in the mechanizing process leading to discrepancies

between the human and the robotic arm [15]. Even so, the introduction of hinges and

linkages to simplify the human arm structure helps in understanding and approximating

the kinematics of the human arm in general.

1.1 Thesis Contributions

The motivation of this thesis is to implement control strategies on a Hybrid Pros-

thetic arm that combines the motion capture technology derived from the Kinect through

implementing a marker-less motion capture system, which will complement the equip-

ment from Trossen Robotics and the prosthetic design from [1]. In doing so, two novel

control strategies are compared and performed - Motion Capture (MoCap) based control
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and Endpoint control through Inverse Kinematics using Blender Game Engine.

The contributions of this thesis are as follows:

1. A graphical representation of the left human arm, as far as the degrees of freedom

are concerned, is presented for visualizing and simulation purposes.

2. A 3D printed 8-DoF biomimetic robot arm is used as the platform for conducting

simulations, experiments and deriving observations.

3. A mechanism to apply human motion to control the kinematics of a redundant

robot arm through Motion Capture using Kinect V2 and Blender Game Engine

features is presented and discussed.

4. Computer simulations using Blender Game Engine features with the redundant

robot arm is implemented making the system capable of producing various arm

movements for finer control and precision and used to validate the proposed kinematic-

control method.

This study presents several proofs of concept where a telerobotic system with high

robot dexterity is operated with various control strategies for human-driven robotics.

The proposed methods enables a user to teleoperate the robotic arm to track a speci-

fied end-effector trajectory, apply a recorded human motion onto the robotic arm and

perform simple tasks by interacting with the objects in the environment.

The following sections introduce the related literature, system architecture, and then

describe the robotic system and their control methods, the graphic interface used for vi-

sualization and simulation purposes, and the experiments conducted to quantify the

ability of the system respectively. Also, the ability to control different bones shows the

promise of the Blender Game Engine as a graphical interface to program and model

different human motions. Finally, this study presents the results of the teleoperation
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experiments. This robotic platform is primarily intended for, but not limited to, appli-

cations in telerobotics and rehabilitation engineering.
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CHAPTER 2

LITERATURE SURVEY AND PREVIOUS WORK

The development of mechatronics has promoted the rapid improvement of human-

computer interaction (HCI) leading many researchers and robot engineers to implement

upper limb humanoid systems with prosthetic hands. While the human hand is highly

dexterous and a complex musculoskeletal structure capable of performing movements

including reaching, grasping and manipulation, implementing such an arm as assis-

tive device depend on complex parameters [16] like the number of degrees of freedom

(DOF), working envelope and working space that the arm covers, kinematics, payload,

speed and acceleration, accuracy, repeatability, and motion control of the arm. For a hu-

man operator to maximize the potential of an advanced robotic arm, the implementation

of various control strategies remains a key challenge in the field of humanoid robotics.

As modelling and simulation provide a test bed for experimenting with and learning

concepts related to a robotic manipulator, a virtual representation of the manipulator

provides a cost-effective and flexible solution compared to its mechanical counterpart.

The availability of several game engines such as Unity and Blender Game Engine enable

virtual simulations to estimate the working of the manipulator in a virtual scenario and

provide tools to generate biomimetic (human-like) behaviour for robotic arms. There-

fore, virtual environments play an important role in telerobotic supervisory control.

According to [17], while taking in to consideration HCI, following features of a game
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engine are considered important:

1. An easy-to-use graphical user interface for animating objects and controlling in-

teraction.

2. The ability to communicate with external hardware and process multimedia sen-

sory data.

First, this chapter reviews the field of telerobotics, its development and require-

ments, and provides a few examples of telerobotic devices. Second, this chapter re-

views Motion Capture, improvements in tracking human skeleton, and different modes

of motion capture; marker based and marker less motion capture for specific applica-

tions. Next, we compare the two motion capture technologies; Kinect V1 and Kinect

V2, relevant to human motion and skeletal tracking. Next, we will review challenges

in modeling, robot kinematics and motion, and bio-mechanical simulations that incor-

porate Inverse Kinematics relevant to skeletal designs using Blender Game Engine.

Finally, we will look at relevant work on design and development of various prosthetic

arms and the control strategies implemented for driving them.

In this study, we use the terms Human-Computer Interaction (HCI) and Human-

Robot Interaction (HRI) interchangeably to refer to the interaction with the prosthetic

arm.

2.1 Telerobotics

It is important to understand the distinctions between a teleoperational system and

a telerobotic system. Robotic teleoperation enables an operator move about, sense and

mechanically manipulate objects at a distance by utilizing human intelligence. A teler-

obot is defined for our purposes as a robot controlled at a distance by a human operator,
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regardless of the degree of robot autonomy [10]. A telerobotic system acts as a robot for

short periods, but is monitored by a human supervisor and reprogrammed from time to

time. [18] states the distinction between telerobots depends on whether all robot move-

ments are continuously controlled by the operator (manually controlled teleoperator),

or whether the robot has partial autonomy (telerobot and supervisory control).

In telerobotics, the human cognitive capabilities for planning and human sensory

motor capabilities for control are imposed on the robot device and it responds to func-

tional commands. A robot can learn sequences of operations, then repeat these op-

erations as instructed by the human operator. A typical ”teach and repeat” operation

include the following tasks:

• defining points in the work space

• defining paths between points

• opening or closing the end-effector (a gripper)

• completing higher level tasks

Using sensors and proper control programs, the robot can also react to and inter-

act with its environment. Essentially, the operator is no longer required to input every

move, instead, he or she supervises the operations at some level of control. Virtual en-

vironments play an important role in telerobotic supervisory control. A large part of

the operator’s task is planning, and the use of computer-based models plays a crucial

role in the development of a teleoperation system. The virtual environment is an effec-

tive way to simulate and render hypothetical environments to impose extreme scenarios

in order to determine the abilities of the system, run the experiment, and observe the

consequences.

More complex robotic systems have only recently seen use in teleoperation settings

such as NASA’s Robonaut, the first humanoid robot in space. It is currently on-board the
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International Space Station and used for tests on how teleoperation, as well as, semiau-

tonomous operation, can assist the astronauts with certain tasks within the station [19].

In [20], telerobotic operations were accomplished by detecting and avoiding obstacles

as the operator controls the end-effector using an accelerometer attached to their hand

and performing grasping actions by measuring EMG signals on the operator.

In [1], the teleoperation was achieved by continuously tracking a subject’s hand

trajectory and simultaneously mapping it on the robot’s hand (see Figure FC2.1). By

computing the instantaneous displacement vector of the subject’s hand and mapping this

vector in the robot’s frame, the robot’s hand target position is computed and the arm is

put into motion by computing the inverse kinematics solution. In addition to this, the

robot was interfaced with gaze-tracking and image processing tools, to allow the user

to drive robot arm by the movement of their eyes instead of limbs (see Figure FC2.1b).

By locating the focus of the subject’s gaze on the plane of the screen, and identify the

corresponding object in the robot’s reaching space, the robot is put in motion toward

the desired object’s position by detecting a specific muscle activation pattern using an

electromyography device to trigger a movement of the robot.

The GummiArm, a bio-inspired robot arm, comprises of 10 tendon-driven joints,

actuated by 19 Dynamixel motors. With 8 of its joints having variable stiffness, this

arm can perform movements similar to that of a human arm. Figure FC2.2 shows its

ability to absorb impacts, to be teleoperated accurately with high stiffness, to write on

a keyboard, and to open a drawer while in motion.

Moreover, the pieces of software operating these devices are should be open and

make it feasible for a user to replicate or customize, modify or adapt to a given use

case. Therefore, the design from [1] benefits from its open-source software architecture

providing a plethora of interfacing options and external softwares can be integrated into

the system.
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(a) Marker-Based Teleoperation.

(b) Gaze Driven Control.

Figure FC2.1: Reachy Teleoperation and Gaze Driven control of the arm [1].

Figure FC2.2: GummiArm [2].
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2.2 Motion Capture

[21] defines “Motion capture” or “MoCap” as ”the process of recording a live mo-

tion event and translating it into usable mathematical terms by tracking a number of

key points in space over time and combining them to obtain a single three dimensional

representation of the human body motion”. During human motion analysis, [22] states

that the human skeleton can be represented as a series of linked body segments to create

a spatial human model. In [23], the movement of each body segment in the spatial hu-

man model can be described in terms of location and orientation in space based on six

degrees of freedom which include forward and backward motions in the sagittal plane

(see Figure FC2.3c), side to side in the frontal plane (see Figure FC2.3b), or inward or

outward in the transverse plane (see Figure FC2.3a).

(a) Traverse Plane (b) Frontal Plane (c) Sagittal Plane

Figure FC2.3: Planes of Motion

Most common methods for accurate capture realistic motions of three-dimensional

human movement require a laboratory environment and the attachment of markers or
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fixtures to the body’s segments. However, such laboratory conditions can prove to be

cumbersome and may cause unknown experimental artifacts. It has been recognized

that skin movement is the most significant source of error in human movement analysis

using markers as they not only impede the subject’s natural movement but also deviate

from their original position when placed on the skin. Moreover, conventional marker-

based motion capture systems often require precise, tedious, and time consuming tasks

such as placing markers on the subject’s body to analyse human motion and calibration

of the space where the task will be performed.

The development of a non-invasive and markerless system, originating from the

fields of computer vision and machine learning, has greatly expanded the applicability

of human motion capture by eliminating the need for markers and thereby, reducing the

patient’s preparatory time and enabled time-efficient, and potentially meaningful as-

sessments of human movement in research and clinical practice. [24] demonstrated the

feasibility of accurate measurement of human motion using markerless motion capture

systems on the basis of visual hulls. Additionally, the markerless framework intro-

duced by [24] expands the applications of human movement capture, minimizing pa-

tient preparation time, and reducing experimental errors caused by, for instance, inter-

observer variability1.

As human joint measurement and posture recognition is a crucial area in the field of

biomechanics and rehabilitation engineering, the need for a low-cost and efficient mo-

tion capture system led to the development of sensor technologies such as the Microsoft

Kinect. There are plenty of studies which highlight Microsoft Kinect’s applications in

the field of biomechanics.

First, [25] highlights that the Kinect is an adequate sensor technology to build an

inexpensive and comfortable system that classifies the Parkinson’s disease into three
1Inter-observer variation is the amount of variation between the results obtained by two or more observers exam-

ining the same material
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different stages related to Freezing of Gait (FoG). The relevant features used in this

classification are related to left shin angles, left humerus angles, frontal and lateral

bents, left forearm angles and the number of steps during a spin. Second, [26] presents

a non-intrusive gait analysis system using Kinect sensor to extract gait information such

as the stride information and the measurement of arm kinematics. [27] also presents a

human gait monitoring system whose accuracy in calculating the parameters required

for human fall detection is comparable to that of Vicon marker-based motion capture

system.

Moreover, [28] compares the performance of a low-cost Microsoft Kinect and a

high-cost multi-camera lab-based system OptiTrack. The experimental results from

this study concluded that the Kinect sensor was able achieve a comparable performance

as of the OptiTrack in terms of motion tracking and it could prove to be a promising

Virtual Reality (VR) neurological rehabilitation tool for use in the clinic and home

environment.

[29] states that the availability of a low-cost marker-less motion capture device such

as the Kinect has made recognition and quantification of human movements more ac-

cessible. [30] recognised the potential to develop applications suitable for use in health-

care settings to detect problems that patients have in coordination of movements by

developing a non-invasive home monitoring and evaluation system for patients with

musculo-skeletal disorders using the Kinect. [31] proposed an approach for a real-time

visual feedback helping the user to correct their posture in either sports training or med-

ical rehab exercises in a virtual reality environment, thereby removing the need for a

real instructor to provide an assessment of the exercise.

[32] presented a framework for efficient Physiological Function Assessment by

measuring the degree of joint mobility and investigating the abnormality of actions of

upper limbs using Kinect V2. In [33] and [34], the Microsoft Kinect sensor is used to
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recognize different body gestures, generate a virtual interface and perform HRI without

having the need to solve the inverse kinematics problem in order to make the robot arm

follow the posture of human arm through transmission of joint angles.

Additionally, [35] proposes an approach to transfer human arm movements to an

upper-body humanoid. By improving on the skeleton data provided by the Kinect, an

inverse kinematics approach is implemented assuming that the robot task is specified in

joint coordinates. This study highlights the potential of the depth sensor in providing

motion data to teach an upper-body humanoid to perform reaching and manipulation

tasks. Also, it is important to note the results of [36]’s work that, though the Kinect

sensor was accurate in measuring the timing and gross spatial characteristics of clini-

cally relevant movements, it could not achieve that accuracy in classifying minor move-

ments like hand clasping and toe tapping. Therefore, tasks that require manipulation

need post-processing computer vision methods for motion data to segment out minor

movements of the hand.

Through the tracking and simulation of the movement of the human body by the

motion recognition system, high-risk and difficult working environments in the future

could be replaced through the transferring of skills from humans to robotic systems.

2.3 Microsoft Kinect

In 2010, Microsoft, in cooperation with PrimeSense released a structured-light (SL)

based range sensing camera, the so-called Kinect V1, as an accessory for the Xbox 360

video game platform in 2010. While it was initially developed as a gaming interface,

it found its use as a markerless motion capture system. Kinect V1 consists of of two

cameras, i.e. a color RGB and a near infra-red (NIR) camera, and an NIR projector

and it measures depth of the objects is measured using the structured light (SL) range

sensing principle. From [37], a sequence of known infrared pattern is projected from
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the NIR projector onto an object, which gets deformed by geometric shape of the object.

The object is then observed from a camera from a different direction. By analyzing the

distortion of the observed pattern, i.e. the disparity from the original projected pattern,

depth information can be extracted as seen in Figure FC2.4.

Figure FC2.4: Kinect V1 structured light principle.

In 2014, Microsoft released the second version of Kinect (Kinect v2) with improved

RGB and IR camera resolution having a larger field of view. In Kinect V2, the depth

is measured using the time-of-flight (ToF) technology based on measuring the time that

light emitted by an illumination unit requires to travel to an object and back to the sensor

array. This means that Kinect V2 computes the depth of objects it has in front of it by

emitting infrared light rays and computing the time taken by these rays need to reflect

from surfaces and find its way back to the sensor. According to [38], this method is

more stable, precise and less prone to interference. The depth camera can acquire data

in the range from 0.50 to 4.5 m (from [38]. Furthermore, The sensor works properly

in an environment with low ambient IR light, making Kinect v2 suitable for outdoor

motion capture. The difference between Kinect v1 and Kinect v2 can be seen in Table

TC2.1.

[39] states that the Kinect V2 has an integrated Sofware Development Kit (SDK)

function for markerless human-motion capture based on [3]’s algorithm on Support
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Table TC2.1: Comparison between Kinect v1 and Kinect v2 from [7] and [8].

Kinect v1 Kinect v2
Sensor Structured Light Time of Flight
Range 1.2 3.5m 0.5 4.5m
Joints 20/people 25/people
Body Tracking 2 6
FoV (Color) 62°x 48.6° 84.1°x 53.8°
FoV (Depth) 57.5°x 43.5° 70.6°x 60°

Vector Machines (SVMs) and Randomized Decision Forests which can fully track up

to 6 human body simultaneously, defined with 25 joints as shown in Figure FC2.5a,

with respect to the reference system defined by the Kinect V2 sensor.

(a) Joints represented by the Kinect (b) Microsoft Kinect V2

Figure FC2.5: Human body skeleton tracking with Kinect V2 by [3]

In [3], a single input depth image is segmented into a dense probabilistic body part

labeling, with the parts defined to be spatially localized near skeletal joints of inter-

est invariant to pose, body shape, clothing, etc. The algorithm generates (possibly

several) confidence-weighted proposals for the 3D locations of each skeletal joint by

re-projecting the classification result into the world space.

While it may not be anatomically correct, [3] reduces the depth image to a repre-
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sentation of a stick skeleton estimating a total of 25 joints (refer to Figure FC2.5a) and

it has shown to have a high correlation with the marker-based motion capture systems

according to [36]. [21] states that marker-based motion capture systems offer accurate

motion tracking, however, they cannot be widely used due to their high cost and opera-

tional complexity.

There are several studies that compare how these two sensor technologies cause the

Kinect to possess specific error sources. [37] offers detailed descriptions under which

conditions one of these devices is superior to the other. A few of the error sources

include Ambient Background Light and Multi-Device Interference are applicable to this

study. Though the addition of multiple Kinect devices may lead to better tracking of

human motion, Kinect V1 is more prone to interference between multiple data streams.

This is due to the fact that the signal shape can be altered in order to prevent multi-

device interference in ToF cameras. Also, the depth sensor stream data from Kinect

V2 can lead to a problem with USB 3 controller bandwidth forcing a maximum of one

Kinect V2 connection per system.

In Kinect V1, the skeleton tracking feature does not track the thumbs of the hand.

The Kinect V2 features the tracking of 5 more joints which include the thumb tracking

and also allows the skeletal tracking of more people than Kinect V1. Moreover, the

skeleton tracking in Kinect V2 appears more natural and precise compared to that of

Kinect V1 as seen in Figure FC2.6. Since Kinect V2 offers better precision and tracking

features, data acquisition for motion capture is done using a single Kinect V2 for all

purposes in this study.

Although unable to support finger tracking, the Kinect sensor can detect an open

or closed fist as shown in Figure FC2.7. The red circle stands for a closed fist and the

green circle stands for an open fist. Moreover, there has been a lot of work on finger

recognition by external observations for extracting 3D poses from an image sequence.
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Figure FC2.6: Skeleton detected with Kinect v2 (red and blue) super-imposed to its Kinect v1
version (green).

Figure FC2.7: Fist Detection using Kinect. Image taken from Kinect 2 Server - Github.

Typically, from [40], the Kinect sensor is used for motion-sensing, fingers and gestures

recognition, such as [41], and the steps used are as follows: (1) depth thresholding; (2)

contour extraction; (3) curves detection; (4) fingertips detection; (5) gesture recognition.

https://github.com/baxter-flowers/kinect_2_server
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In addition to this, [4] searches within the 3D area that is limited between the Hand and

the Tip joints (10-15 cm, approximately) and determines the edges of the convex hull

to detect the fingers as shown in Figure FC2.8.

Figure FC2.8: Finger tracking using convex hulls from [4].

With the help of the Kinect’s software development kit (SDK), the Kinect V2 can be

employed in many cases as an alternative low cost marker-less solution as it provides a

model of a 3D skeleton with 25 joints of the human whose full body is placed within the

field of view of the Kinect IR camera. According to [42], there exists poor correlation

between Kinect V1 skeleton data and commercial motion capture systems which is

reported in [43] and [44] during the assessment of lower extremity motions. Due to the

low technological specification of Kinect V1, there has been technological improvement

in the specifications and accuracy of the Kinect V2 which has led researchers ( [45],

[46], [47]) to be able to track the sagittal plane’s joint angles of the human motion

during functional movements and also to evaluate the Kinect’s accuracy in capturing

joint angles in the anatomical plane beneficial to the field of bio-mechanics.

The field of human motion analysis encompasses the areas of hand movement and

sign language recognition, rehabilitation engineering including gait analysis, medical

applications and health care applications such as development of assistive robot pros-

theses, and fall detection. However, this study limits to the use of skeleton tracking data

for the analysis and replication of motions in a clinical setting.

In addition to being relatively cheap and easy to setup and operate, [21] mentions

that while the Microsoft Kinect sensor can achieve real-time 3D skeleton tracking, this
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system suffers from the following limitations:

• It is designed to track the front side of the user. The front and back sides of the

user cannot be distinguished by the Kinect, i.e., even if the user’s back is towards

the Kinect, the Kinect is might mistake whether the user’s pose is facing towards

the camera or not.

• Tracking suffers from occlusions (e.g. self-occlusion by other body parts), and

non-distinguishing depths (limbs close to the body) as it is a depth camera.

On the other hand, [48] examined the accuracy of Kinect depth data for static ob-

jects, showing that the average error of the depth measurement ranges from a few mil-

limetres up to about 4cm at the maximum range of 5 meters and suggested for mapping

applications the data should be acquired within 1–3 meters distance to the sensor as at

larger distances, the quality of the data is degraded by the noise and low resolution of

the depth measurements. Figure FC2.9 shows the estimation of the depth error of the

two versions of the Kinect sensors as a function of the distance between the sensor and

the object as determined by [5].

Figure FC2.9: Estimation of the error by the two Kinect sensors as a function of the distance
between the device and the object [5].
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2.4 Blender Game Engine

Before the motion data from MoCap can be edited by any system, it usually needs to

undergo pre-processing to ensure that correct hierarchical connections and bio-mechanical

constraints have been taken into account. In bio-mechanical simulations, the primary

focus is to implement physiologically accurate representations of skeletal systems. Hu-

man body modelling is a problem that arises in ergonomics and in computer graphics

applications which involves a complex hierarchical model consisting of many joints,

with each joint having different degrees of freedom (DoF) and various possible restric-

tions, as stated in [49].

A robotic manipulator can be thought of as a chain composed of rigid links con-

nected at their ends by rotating joints. Any transformation applied, either translational

or rotational, on the ith joint affects the translation and rotation of any joint placed

further along the chain, i.e. (i+ 1)th in the chain. The design of such a model is an

assumption approximating reality and it is required to be analytically and anatomically

correct in order to control the available movements of the human body while following

various joint constraints. These models are mainly characterised by the number of pa-

rameters such as the number degrees of freedom which describe the motion space and

are usually constrained by the joint limits and joint structure.

The major difficulty with upper-limb design is the kinematic interpretation of human

joints and the development of mechanisms that can mimic human motion. A human

arm and hand, without the fingers, has 7 degrees of freedom altogether, six of which

are enough for achievement of a desired hand position and orientation. Because of the

complex structure of the human arm, most of the proposed joint models are simplified

or approximated by more than one joint. Also, the challenge to simulate a movement of

a robotic arm, for e.g. to perform a pick and place operation require the information of

the total degrees of freedom the robotic arm can have for simulation to work correctly.
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While there are many tools that already exist to simulate robots in virtual environments

and to visualise sensory data, a robotics simulator based on Blender 3D and Python

as scripting language in [50] forms the basis of performing a pick and place operation

by a 6-DoF robot in the virtual environment. Visualization, in a graphically appealing

manner, is an important prerequisite to understand the internal kinematic changes that

occur while keeping the design intact in bio-inspired robotics. Therefore, this study

employs the use of Blender Game Engine (BGE) as a graphical interface to perform

motion capture and bio-mechanical simulations. From [51], Blender is known for:

1. Visualisation: To show a virtual version of the real robot world.

2. Simulation: Allows you to run a program in Blender that could also run on a real

setup, in order to quantify the robot’s behavior and effectiveness.

3. Emulation: Allows you to try a control algorithm first on a Blender version in-

stead of on a real robot enabling fine tune controls and checking different behav-

iors in a variety of situations that may prove to be expensive or dangerous in the

real world.

In Blender, a rig is defined as a single chain of bones built to deform a surface

mesh alongside a few miscellaneous bones needed for animation control. The process

of adding bones to an object or model is called rigging. Once a model of the arm

structure is defined, the required motion of the arm structure can be achieved through

applying a series of rotational or translational transformations to move end-effector(s)

of the chain to obtain a desired position in space. Following the rigging process, there

are usually two options to animate a robot arm: either by using Forward kinematics

(FK) - moving each bone and joint positions to obtain the desired orientation in space,

or by using Inverse kinematics (IK) - moving the end-effector(s) and computing the

joint configurations.
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Inverse Kinematics (IK) is a method for computing the posture via estimating each

individual degree of freedom in order to satisfy a given task; it plays an important role

in the computer animation and simulation of articulated figures. Also, it has been used

in rehabilitation medicine in order to observe asymmetries or abnormalities alongside

Motion Capture technologies. For instance, [52] present an Inverse Kinematics for Up-

per Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation by

approximating the rendering of the actual posture during the elbow-shoulder compound

movement. These studies can help in understanding and evaluating the patient limb

posture through tests on Exoskeleton-based platforms.

Blender not only provides tremendous support for IK based kinematics and captur-

ing human motion.

2.4.1 Delicode NI Mate

NI-Mate is a powerful software platform that takes real-time motion capture data

from a Kinect and turns it into two industry-standard protocols: Open Sound Control

(OSC) and Musical Instrument Digital Interface (MIDI). Amongst these two, NI Mate

software makes extensive use of the OSC (Open Sound Control) protocol. With the ad-

vent of Kinect’s skeletal tracking capabilities, NI Mate can extract skeletal joint tracking

data and import it into widely used motion capture software solutions such as Motion

Builder, Animata, Blender, Maya, etc. NI Mate enables sampling of multiple sensor

data at 30 Hz and transmission of Open Sound Control (OSC) messages through socket

programming to a PC which will be used to control and animate 3D models in Blender.

This is extremely beneficial in systems that consist of real-time 3D spatial tracking of a

physical object.

Since the end goal is to drive a robot arm, NI Mate allows for Skeleton Tracking

to track the necessary human body joints. The software allows to choose the point of
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origin in 3D space when it is tracking joint coordinates. The NI-Mate app captures

your movement in the camera and converts it to MoCap data that can be imported into

Blender.

Some sensors such as Leap Motion contain hand tracking, NI-Mate is able to output

the hand joints in addition to the normal skeleton. However, only the hand tip and the

thumb tip joints are available from the Kinect V2. Even so, this option can be enabled

to determine whether the fist is open or closed during motion capture.

If the hands option is enabled within NI-Mate, the fingers estimated through the

software are added at the end of the arm but are very susceptible to variations due to

noise and occlusion. In Figure FC2.10b and Figure FC2.10a, the closing and opening of

the fist is detected as tracked through motion-capture. Using these features, the results

are as shown in Figure FC2.10.

(a) Open fist captured in Blender using
Kinect V2 and NI-Mate add-on.

(b) Close fist captured in Blender using
Kinect V2 and NI-Mate add-on.

Figure FC2.10: NI-Mate add-on with tracking of fingers enabled.

Therefore, Blender has been chosen as the graphical interface as it supports the

entirety of the 3D pipeline—modeling, rigging, animation, simulation, rendering, and

motion tracking. In this study, it provides the necessary support for real-time motion

capture, and controlling the arm using different modes of kinematic control.
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CHAPTER 3

DESIGN AND METHODOLOGY

A visual representation of the upper arm is graphically modelled and represented

in Blender which will form the basis for simulating and analysing the shoulder-elbow-

wrist mechanism. These representations in the virtual environment helps in studying

the different trajectories the arm’s joints traverse during any motion. The model repre-

sentation in Blender is observed to produce smooth, continuous motions that mimic a

human arm through the control mechanisms discussed in the next chapter. The system

designed can be summarised in Figure FC3.1.

Figure FC3.1: System Design.

First, this chapter reviews the system design. Second, the features of Blender Game

Engine are discussed and the implementation of the interface is described. This section
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consists of two sections - the motion capture interface and the graph editor to analyze

the human motion recorded from Kinect respectively. respectively. Next, the design of

the kinematic structure of the human arm is modeled in Blender through the process of

rigging.

The physical arm design and structure of the robotic arm is derived from [1], and

extends into an implementation of a novel control strategy by employing the use of a

Kinect for Windows 2 for skeleton tracking and the Blender Game Engine to capture

human motion and translate the captured or real-time motion onto the prosthetic arm.

This chapter The joints present in the robotic arm used in this study are revolute joints

or rotating joints. The study aims to study the kinematics of the 8-DoF robotic arm

concerned with the positions and angles of the joints without consideration of the forces

or moments that are causing the motion. In particular, how the motion of a particular

joint of the arm is related to the motion of the other joint in the arm itself is discussed.

This thesis presents different control strategies to operate the prosthetic arm; tele-

operation using Motion Capture (MoCap) using Kinect V2, forward kinematics by se-

quentially adjusting the orientation of all the joints to attain the desired pose and end-

point control through Inverse Kinematics (IK), which converts the values obtained from

the 3D configurational space into the actuator space using the Blender Game Engine.

The terms human motion refer to the motion of the human arm being tracked and/or

recorded using the Kinect.

3.1 Motion Capture and Animation

The process to setup a motion capture system using the Microsoft Kinect V2 is

explained in Appendix A in the Figure FA1.1. This section explains the integration

of Microsoft Kinect V2 and NI-Mate with Blender Game Engine to achieve real-time

motion capture.



27

3.1.1 Blender 2.78

There are 25 joints of the human body tracked by the Kinect using the NI-Mate

software. These joints are represented in the Blender 3D environment as points, referred

to as empties, as shown in Figure FA1.8. These empties represent the joint coordinates

estimated by the Kinect sensor are mapped onto a bone structure created inside Blender

to further analyse any captured or recorded motion.

These empties are connected to form a 3D rendition of a skeleton that will mimic

the movement of the arm captured from the Kinect. The addition of the bones to form

a 3D model is called Rigging and it simplifies the animation process. Here, the empties

obtained from NI-Mate are interconnected to form the digital bones in Blender. The

complete rendition of the bone structure in blender is called an Armature and it can

consist of many bones. The robot arm is represented as a kinematic chain of such bones

(links) connected by revolute joints. These bones can undergo many transformations

such as translation and rotation and a combination of these motions associated with the

bones will move or deform in a similar way.

Figure FC3.2: Armature Object in Blender. Image is taken from https://docs.blender.

org/manual/en/2.79/rigging/armatures/introduction.html

This feature of Blender makes it easier to understand and control the prosthetic arm

https://docs.blender.org/manual/en/2.79/rigging/armatures/introduction.html
https://docs.blender.org/manual/en/2.79/rigging/armatures/introduction.html
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movement in a 3D environment. The properties of rigging which the study will primar-

ily focus on are Forward and Inverse Kinematics, describing the relationship between

the joint positions and the end-effector position and orientation. These features will be

discussed in the next section. Blender receives the sensor data (geometric coordinates

and orientation) of the joint from the NI mate add-on, transmits it to Blender Game

Engine (BGE) to update the virtual environment within Blender. Through the use of

such features available in Blender, we can simulate the process of an arm movement

captured in real-time.

To create a human model in Blender, we make use of a rig that either can be gener-

ated using the Rigify add-on or the NI Mate Mocap Rig. Blender also provides tremen-

dous support for Rigging and Animation. The Rigify feature generates an armature with

fingers which can be used should there be a way to track fingers. As Kinect does not

individually track all the fingers of the body being tracked, the latter rig is used. This

rig consists of three collections namely:

• Coordinate Data: The raw XYZ location data from the NI Mate add-on as shown

in Figure FC3.3.

• Capture Armature: The interconnected structure of the body used for capturing

motion as shown in Figure FC3.4.

• Retargeted Rig: An armature which is manually reoriented to make real-time

motion tracking easier and accessible to the links between the joints transmitted

to Blender from the NI mate add-on as shown in Figure FC3.5.

When a person is in the Kinect’s field of view (FoV), the skeletal data can be trans-

mitted using the NI mate add-on into Blender and the rig mimics the person’s motions

through tracking the empties. These movements can be recorded in Blender by storing

https://archive.blender.org/wiki/index.php/Extensions:2.5/Py/Scripts/Rigging/Rigify/
https://remington.pro/resources/assets/misc/nimate-mocap-rig/
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Figure FC3.3: The raw XYZ location data from the NI Mate add-on

Figure FC3.4: Capture Armature

them as keyframes in 3D space. The recorded motion can be replayed from the first

recorded keyframe.
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Figure FC3.5: Retargeted Armature

3.1.2 Motion Analysis using Blender

In this section, human motion captured using the Kinect is analysed with the help

of Blender. Human Motion Analysis is very important when it comes to quantifying

performance and determine any irregularities in a person’s recorded motion. Moreover,

a certain action replicated by different people, although similar to the naked eye, will

produce varied results which will be useful in understanding the variations in kinematics

of human motion.

In order to program and control the arm, it is required to know its spatial arrange-

ment and a means of reference to the environment. The coordinates in Figure FC3.3 can

be used to plot graphs in the coordinate system with respect to the Kinect sensor as ori-

gin. In addition to this, Blender has an inbuilt UI which enables the user to view graphs

using the Graph Editor as shown in Figure FC3.6. These graphs can be exported from

Blender and can be processed and filtered further to draw correlations between different

motions to either analyse a person’s movements such as their gait or in fall detection.

Blender Game Engine has an embedded Python interpreter which provides access to
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it’s data, objects, classes, and functions. Therefore, Blender’s python interpreter allows

flexibility in accessing the captured motion data.

(a) Single Joint Graph

(b) Multiple Joints Graph

Figure FC3.6: Graph Editor within Blender Game Engine.

The joint locations as tracked in Retargeted Armature, in Figure FC3.5, have been

mapped onto an upper arm rig (see Figure FC3.7) and simulations and data acquisition

will be performed on this simplified rig itself. Although the joint tracking from Kinect

V2 may seem fairly real-time, the system is susceptible to error due to the variations in
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accuracy of the joint being tracked as the distance from the sensor increases. From [53],

although the Kinect v2 can physically sense depth at a distance of 8 meters, the skeleton

tracking range is 0.5 meters to 4.5 meters, and it has trouble finding a skeleton at closer

than 1 meter because of the field of view of the camera. However, 4.5 meters is where

the system can reliably track body joints. Anything beyond 4.5 meters will lead to

inconsistent results in body joints tracking.

Figure FC3.7: Upper Arm Rig

In addition to variations in tracking with distance, the Kinect SDK does not support

individual finger tracking, i.e., the skeletal tracking API by Kinect’s official SDK only

has the hand joint - no provisions for finger tracking. The skeletal tracing feature in

Kinect SDK 2.0 tracks the wrists, hands, index finger tip and thumb tip. Therefore, the

prosthetic arm is more suitable for studying of reaching to an endpoint position than

manipulation as mentioned in [1], and this thesis will aim to integrate a hand prototype

from third-party projects to exploit it’s full potential in performing manipulation in

addition to reaching and grasping.

Although independent finger tracking is unavailable, the prosthetic arm will be pro-

grammed to open and close its end-effector through measuring the distance between

the hand tip and thumb tip, and the same will be reflected using Inverse Kinematics in

Blender.

To address finger-tracking using Kinect V2, three solutions have been identified.

First, using the two joints on each hand, the hand-tip and the thumb, the end-effector

can be driven to either close or open completely to represent the closing and opening
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of a human fist. Second, using Blender features such as Kinector, it is possible to ap-

proximate the tracking of independent fingers and then, dedicate servos to individually

manipulate a certain finger based on motion tracking from Blender. Finally, an alternate

solution from [40] and [4] would be to segment the Kinect’s video stream, obtain the

contour that belongs to a hand and find the convex hull. Consequently, the edges of the

convex hull above the wrist define the fingers.

In this study, we address these challenges by introducing an approach to human

pose estimation by detecting and applying the opening and closing of fist as a mode to

control the end-effector. Also, the lengths of bones represented in Blender are indepen-

dent of the person within the FoV of the Kinect’s camera to ensure that the system is

independent of the physique of the person whose movements are being tracked.

3.2 Rigging with Forward and Inverse Kinematics

Since this study is limited to the analysis of motion of the upper limbs, the idea was

to reflect the motions captured by the Kinect onto a specialized rig that can represent

the human motions in a more dexterous and realistic manner. This led to the using

a upper limb rig from from Blender Documentation as shown in Figure FC3.8 that

was modified to represent the actual motions of the person’s arm being tracked or by

performing endpoint control through Inverse Kinematics (IK) in Blender.

In robotics, we consider two kinematic problems. First, the forward kinematic prob-

lem computes the pose of the end-effector of the robotic arm given the angles of all the

joints. Second, the inverse kinematic problem determines the joint angles that are re-

quired given the pose of the end-effector.

According to [49], these techniques are described as follows:

https://docs.blender.org/manual/en/latest/animation/armatures/posing/bone_constraints/inverse_kinematics/introduction.html#arm-rig-example
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Figure FC3.8: Rendering of a human arm.

• Forward Kinematics (FK): can be defined as the problem of locating the end-

effectors’ positions after applying known transformations to the chain.

• Inverse Kinematics (IK): can be described as the problem of determining an ap-

propriate joint configuration for which the end-effectors move to desired posi-

tions, named target positions, as smoothly, rapidly, and as accurately as possible.

In forward kinematics (FK), the joint angles are the inputs to the links in the kine-

matic chain, the outputs would be the coordinates of the end-effector(s). On the con-

trary, in inverse kinematics, given inputs are the coordinates of the end-effectors, the

outputs that require calculation are the joint angles.

In Blender, to obtain the desired position, it is required to animate all the bones ro-

tation sequentially to achieve the said position which is preferred in situations where

bones require accuracy in their transforms in the local space. This process of sequen-

tially adding transforms in a top-down hierarchy is called Forward Kinematics. Al-

though this process takes longer, it provides the user entire control over the rig. Con-

trary to FK, from [54], the end-effector is the first thing that is set and the rest of the

bone chain is calculated afterwards in the case of IK. According to [55], the process of

inverse kinematics involves finding the positions for the joints in the chain to make the

chain behave as it is required to. This is usually achieved by rotating the joints to reach



35

the end position for the last link called end-effector.

To visualise the motion execution by the robot, the kinematic chain (or armature)

underlying the prosthetic robot arm is modeled using bones, and the mesh defining the

robot’s appearance is attached to this kinematic chain (Figure FC3.9).

Figure FC3.9: The internal kinematic chain rendered arm

[56] mentions that FK is not very useful when you have a desired end-effector

position, but need to know the joint angles required to achieve it. Given a change of

angle of any servo actuator, only one effector moves in the chain. But if we are given

a change of coordinate, the whole chain of effectors (servos) might have to move a

certain angle for the end point to reach the desired position. Therefore, by having the

end-effector treated like a constant point in space, it is easier to move bones higher up

in the hierarchy and still have the chain end up at the same point.

From [57], Blender allows the user to choose from different possibilities, either by

sending end-effector positions or joint angles, to control a kinematic chain. In case

the end-effector positions are being sent, the user has the choice between the Blenders

internal inverse kinematics (IK) solver functions or his own IK-solver and control the

armature based on joint angles and translation vectors.

Although IK is difficult to implement, Blender creates an inverse kinematic solu-

tion to rotate and position links in a chains using two IK solvers: Standard IK Solver
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(Jacobian) and iTaSC IK Solver; which allows manually setting up bone influences and

relationships in the rig. In addition to this, Blender allows IK behaviour up through a

controlled number of bones (chain length) in the chain whilst not impeding the individ-

ual movement or rotation of any bones not directly contained in part of the IK.

In the current study, the standard IK solver is used in order to calculate the positions

of the other bones automatically by positioning the last bone in a bone chain.

The virtual model of the upper arm requires two bones to control the orientation

of the entire kinematic chain. The end bone, as shown highlighted in Figure FC3.10,

can be manipulated directly and controls the bending of the arm at the elbow in the

direction of the Pole target. A pole target is a secondary target for a bone with an IK

constraint. The first target, by manipulation of the end bone, is where the chain of bones

is trying to get to, and the second target (pole target), is where the chain bends to to get

to this target. Therefore, the placement of the pole target is important to decide in which

direction should the chain of bones bend.

Figure FC3.10: Arm Rig uses two bones - IK Target and IK Pole Target. The IK Target enables
the chain to be repositioned when it is manipulated.

When dealing with robotic arm animation, the vertices of different sections of the

arm (mesh) are assigned different vertex groups with that of the bone so that they will

move exactly with their bone. The mesh deformations occur when there are differ-

ences between the weights of different vertices on the arm which is shown in the Figure
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FC3.11. Moreover, through the process of weight painting, the model can be accom-

modated with finger bones that allows us to have finer control by being able to control

the fingers, proving to be very feasible for animation and control purposes. The weight

painting process is further explained in Appendix C, in the Figure FA3.1, Figure FA3.2

and Figure FA3.3.

3.3 Robot Design, Hardware and Electronics

Once the rig is set to record and capture motion or to control the arm using Inverse

Kinematics from Blender, the joint angle values from the rig will be sent to a micro con-

troller through serial communication from BGE (see Figure FC3.1). As Blender pro-

vides Python modules such as Pyserial, serial communication is feasible from Blender

to the ArbotiX-M micro-controller. This controller will drive the actuators which act as

joints in the prosthetic arm.

3.3.1 Reachy’s Arm

The standard model of the robotic arm, Reachy [1], is a 7-DoF prosthetic robotic

arm with each of them actuated by a dedicated motor. In this study, Blender’s Python

environment is used as an interface to translate the data to an Arduino compatible board,

the Arbotix-M. The arm is 3D-printed using Poly Carbonate material weighing nearly

1.4 kilograms and measuring 60 cm from shoulder to wrist [1]. However, with the

addition of gripper to provide 8-DoF, nearly 70 cm-radius hemisphere is centered on its

shoulder joint.

From [1], the first three motors perform three consecutive rotations as shown in

Figure FC3.13: shoulder flexion-extension, shoulder abduction-adduction, and humeral

rotation. The fourth motor controls the elbow flexion-extension and the fifth motor
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(a) ’body’

(b) ’shoulder’

(c) ’arma’

(d) ’armb’

(e) ’armc’

(f) ’armd’
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(g) ’hand’

(h) ’thumb’

Figure FC3.11: Bone influence on the mesh deformations using weight painting.

Figure FC3.12: Reachy Robotic Arm. Image taken from [1].

is responsible for the forearm’s pronation-supination. The sixth and the seventh mo-

tors operate at the wrist joint by performing consecutively radial-ulnar deviation (also

known as abduction-adduction) and flexion-extension. The last motor controls the grip-

per at the end of the prosthetic arm which performs grasping tasks.
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Figure FC3.13: Reachy comprising of seven independent DoF. Image taken from [1].

3.3.2 Hardware

3.3.2.1 Dynamixel Actuators

The robotic arm’s design employs the use of Dynamixel servomotors to actuate the

seven DoFs present on the arm.

There are three different models of Dynamixel motors used in [1]’s standard version.

The shoulder’s flexion-extension is controlled by the MX-106 AT while the other DoFs

and the elbow joints are controlled using the MX-64 AT. All the other joints are operated

by the AX-18A as these joints do not require as much power as the previous joints. In

addition to this, the AX-18A’s are lighter and smaller than MX servomotors. Therefore,

the prosthetic arm’s weight distribution decreases towards the end-effector.



41

The shoulder-to-elbow complex of the robotic arm is operated by the MX Dy-

namixel series as these four joints support the heaviest loads while the robot is put

in motion. The forearm and wrist joints, which do not require as much power, are op-

erated by AX-18. Therefore, the robotic arm’s weight distribution gradually decreases

towards the distal end (end-effector). These actuators have load and temperature sen-

sors embedded within to automatically trigger resting phases. Also, these motors are

allow the individual tuning of an internal Proportional-Integral-Derivative (PID) con-

troller, moving speed, angle limits, maximum torque and they can be daisy chained to

reduce wiring in the system. The values that these actuators provide as the feedback

are Present Position, Instantaneous Speed, Load applied, Voltage levels, Temperature

of the motor, and the current that is being consumed by the motor.

The process of setting up the Dynamixels and the components required to reconfig-

ure the Dynamixels are explained in Appendix B.

3.3.3 Electronics

As the Dynamixels consume very high amounts of current, they are powered by a

12V x 30 A SMPS. The Dynamixels are daisy-chained using three pin connectors, out

of which the Input Voltage (VIN) and the Ground (GND) are connected to the power

supply (SMPS), while the Data line is untouched.

The MX-106 AT is connected to the micro-controller, Arbotix-M, which is plugged

into a computer using a FTDI-USB Cable. The prosthetic arm is then manoeuvred by

passing values through a serial port with a software interface provided by Blender Game

Engine (BGE) using Arbotix-M micro-controller (see Figure FC3.14),to communicate

with Dynamixel servomotors i.e., sending motor commands to drive the robot arm or

retrieving data from embedded sensors. The FTDI cable is a USB to Serial (TTL level)

converter allows for programming the board as well as to connect TTL interface de-
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vices such as the Dynamixel servo motors to USB interfaces. There is an XBee socket

which allows for wireless serial communication to the ArbotiX-M micro-controller by

plugging in an XBee. The XBee socket shares a serial port with the FTDI port, so only

one of those can be used at a time. Therefore, the ArbotiX has 2 serial ports. One

serial connected to both the FTDI header and the XBEE port and the other used for the

Bioloid bus for TTL communication. In addition to this, the board also has an I2C port

which was used to retrieve data from the Dynamixel actuators to analyse the operation

of the Dynamixel motors, either ni real-time or by applying a certain recorded motion

onto the arm.

Figure FC3.14: The ArbotiX-M micro-controller. Image taken from Trossen Robotics.

The Arbotix-M is powered using an external power supply (12V, 5A). As the serial

ports are used up in programming and in communicating with the Dynamixel Servos,

I2C communication with another Arduino board is implemented to receive motor feed-

back as shown in Figure FC3.15.

https://www.trossenrobotics.com/p/arbotix-robot-controller.aspx
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Figure FC3.15: Arbotix-M and Arduino I2C communication.
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CHAPTER 4

EXPERIMENTS

Variations in Tracking Joints with Distance using Motion Capture

To determine the variations during tracking through motion capture in this study, a

simple task to vary the supplement of carrying angle as shown in Figure FC4.1, the

angle between the longitudinal axis of humerus and ulna. These actions was repeated

over varied distances ranging from 1 meters away to 4 meters away from the sensor in

steps of 1 meter.

Figure FC4.1: Carrying angle. Image taken from [6].

A person was taken as the test subject who will be repeating the above mentioned

tasks over varying distances ranging from 1 to 4 meters away from the Kinect sensor.
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During the measurement of the supplement of carrying angle, i.e, 180° - carrying angle,

the variations in the values of the joint angle was either due to the time delay in exe-

cuting the action was either delayed or early, or due to the inconsistency in maintaining

the pose for a certain duration of time during the repetition of the tasks over different

distances resulting in either a lag or a lead in the action graph as shown in Figure FC4.3.

The joint trajectory paths in the recorded skeletal tracking data is shown in the Figure

FC4.2.

The variation of the joint angles when performed the similar action across various

distances from the sensor can be seen in Figure FC4.4. The correlation of the average

measurement value of joint angle is highest for distances which are 2-3 meters away

from the Kinect sensor.

These angles are computed by transforming the joint coordinates with Kinect sensor

as the origin in to vectors along the shoulder-elbow and elbow-forearm axes and per-

forming the scalar product of these two vectors. These joint coordinates are also applied

onto the graphic model present in the blender and the joint angle values are computed to

check whether there are no errors in remapping the joint coordinates onto the armature.

The variation in remapping the joint coordinates obtained from Kinect to compute the

angles on the arm model in Blender is tabulated in the Table TC4.2.

Table TC4.1: Difference in measurement of carrying angle with the average versus distance
away from the Kinect Sensor.

Distance from sensor
(meters)

Minimum (from average) Maximum (from average)

1 -19.794817° 25.183552°
2 -14.351645° 21.518491°
3 -18.783611° 9.822832°
4 -14.183169° 13.938318°

From the Table TC4.1, it is seen that for better tracking and for the minimum range

of variations, the motion capture using Kinect v2 is better suited for measurements

ranging from 3-4 meters. The higher peaks and very large variations are most likely
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(a)

(b)

(c)
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(d)

(e)

Figure FC4.2: Skeletal Tracking Recorded Motion trajectory.
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Figure FC4.3: Tracking of Elbow joint angle against distance from the Kinect sensor.

due to the contribution of noise as detected by the sensor.

Table TC4.2: Variation in remapping the joint coordinates obtained from Kinect to compute the
angles in Blender.

Distance from sensor
(meters)

Difference in angles after remapping
(degrees)

1 0.778695
2 0.780936
3 0.776116
4 0.782673

Experiments

The forward and inverse kinematics of the 8 DoF robotic arm are simulated in

Blender. Forward kinematics of manipulator allows in estimation of robot workspace
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Figure FC4.4: Variation in tracking of Elbow angle with distance from the sensor

and in knowing the singular regions during operation, while the inverse kinematics of

the manipulator would be needed for real-time control task. In particular, the relation-

ship between the joints in the robot’s arm and the pose of the robot’s end effector are

determined. As the various joints in the arm are moved, the pose of the end-effector

of the arm changes. The concept of forward and inverse kinematics was used to de-

termine the end-effector position for fixed joint angles, and the joint angles for a fixed

end-effector.

The rest pose of the arm (with every bone’s local axes) is shown in Figure FC4.5. All

the simulations performed in Blender, including animations and recording of motion is

performed at 24 frames per second.
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Figure FC4.5: Rest pose of the armature. (’Edit’ mode in Blender)

4.1 Control Strategy 1: Forward Kinematics

Here, the object that is to be animated is the arm as shown in the Figure FC4.6. The

end effector’s (i.e, the joint labelled as hand) position and orientation in the configu-

ration space would be calculated from the angles of the shoulder, elbow, and the wrist

joints. For instance, in order to achieve the position shown in the Figure FC4.6l, the arm

has to undergo transformations manually from the shoulder to the wrist in the sequence

as showing in Figure FC4.6.

By forward kinematics, the desired position of the end effector would be achieved

through setting bones sequentially starting from the root bone until the end bone is

reached. When each parent bone is moved, its child bone would inherit its location and

rotation making precise changes harder as one traverses the kinematic chain. Therefore,

the forward kinematic problem to control the robotic arm is straightforward as the an-

gles of the ith joint are calculated with respect to the (i−1)th joint in order to pose the

end effector with precision.

As the bones were oriented sequentially, their respective Euler orientations are plot-

ted and shown in the Figure FC4.7. The angles are with respect to the rest position of
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(a) Blender - Shoulder Roll (b) robotic arm - Shoulder Roll

(c) Blender - Elbow Rotation (d) robotic arm - Elbow Rotation

(e) Blender - Wrist Pronation (f) robotic arm - Wrist Pronation
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(g) Blender - Wrist Flexion and Exten-
sion

(h) robotic arm - Wrist Flexion and Exten-
sion

(i) Blender - Gripper (Closed) (j) robotic arm - Thumb (Closed)

(k) Blender - Gripper (Wide Open) (l) robotic arm - Thumb (Wide Open)

Figure FC4.6: Comparison of poses between the virtual arm in Blender and Robotic Arm.
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Figure FC4.7: Blender Arm Rig: Forward Kinematics graphs for individual bones with the
positions of their respective actuators present on the robotic arm.

the arm which is shown in the Figure FC4.5. As all the bones are positioned down the

hierarchy, the final end-effector position is achieved. In Figure FC4.7i, the highs and

the lows are characterised by the flexion and extension of the thumb bone respectively

in the Blender environment.

The Denavit-Hartenberg parameters for the current robot arm (till the wrist joint

excluding elbow-forearm yaw link) are mentioned in Appendix D.

However, forward kinematics has its disadvantages albeit being easy for basic ani-

mation purposes. In order to animate the arm, the system follows a ”top-down” system

of rotation making the user follow a hierarchy by first rotating the shoulder, upper arm,

elbow, then the forearm and finally the hand itself until the end-effector is in the desired

place.

In addition to this, if the end-effector is required to stay in place while rotating other

joints in the arm, rotating the entire hierarchy of the kinematic chain would result in

the position and orientation of the end-effector to change needlessly. Also, rotating

the foremost joint in the hierarchy (the shoulder) while keeping other joint orientations

intact would result in the hand’s (the end effector) orientation to change.
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In order to overcome these challenges, the second control method describes the

implementation of inverse kinematics in Blender.

4.2 Control Strategy 2: Inverse Kinematics

The inverse kinematic problem is defined as the problem of determining the joint an-

gles that are required given the pose of the end effector. The inverse kinematic problem

is solved through Blender’s standard IK solver allowing the last bone to be positioned

and the other bones in the kinematic chain will be positioned accordingly. Unlike the

efforts taken in forward kinematics to sequentially position the joints to achieve a de-

sired end effector position, through IK translating a target bone will activate inverse

kinematics and rotate the target’s parent bone, and the target’s parent’s parent, and so

on, to follow the last bone in the hierarchy. One of the features of the human joints

is that they have a limited range of motion that it can rotate. As not all the joints can

rotate 360° around their local axes, such as the elbow joint, the bones can be deformed

if proper constraints are not added. Along with angle constraints to limit rotation of the

elbow joint, a secondary bone (called as Pole Target) is added which is responsible for

where the chain bends to get to the target bone.

Given a kinematic chain of 7 bones as shown in the Figure FC3.10, the chain length

is set to 4 starting from armd to arma. This mesh in Blender uses two bones to over-

come the twist problem for the forearm: the IK Pole Target and the IK Target bone.

The position and the orientation of the pole target will determine the orientation of the

elbow joint. The orientation of the IK Target is mapped to the orientation of the hand

bone as it is mapped to the robotic arm’s end-effector.

Therefore, inverse kinematics in Blender rotates the bones of the kinematic chain

(or armature) into position according to the two control bones (target, pole). In other

words, instead of computing the individual rotations required for the shoulder, elbow,
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forearm and the wrist joints to get the hand (end-effector) into position, the control

of the hand joint within Blender would adjust the rotations of other joints in the body

causing the rest of the arm to follow.

As the target bone is positioned, the position and the orientations of the joints in

the arm are calculated through Blender’s standard IK solver i.e, the Jacobian Inverse

IK Method. Although this method is powerful, it may be computationally expensive

as the Jacobian Matrix columns increases with the number of joints in the articulated

body. The arm’s yaw is controlled using the pole control bone in addition to controlling

individual joints like in forward kinematics for higher degree of control and precision.

An overview of the Jacobian IK is described in Appendix D.

4.2.1 End-point control using Inverse Kinematics

In order to understand how inverse kinematics arranges the bones, from the bottom

of the kinematic chain’s hierarchy to the top i.e, from the hand to the shoulder bone

as seen in Blender, the tail of the hand bone is taken as the target bone’s location in

the 3D space. Also, in the forward kinematics problem, the end-effector (the hand

bone) reached the desired orientation in about 660 frames. This duration to reach the

desired location can be controlled with inverse kinematics. We can either reach the

same location in 660 frames or less. However, for comparison purposes, the IK target

bone is made to move from the initial position to the final position of hand bone as seen

in FK.

The process of animating the position of the target bone can be performed either in a

linear interpolation (constant speed) or Bezier interpolation where inserted frames that

comply with a Bezier curve. The differences between the two different interpolation

sequences are shown in Figure FC4.9. The position and orientation of the IK target

bone, during different methods of interpolation, varied as shown in the Figure FC4.9a
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and Figure FC4.9b.



61

0 200 400 600 800
-5

0

5

10

15

20

25

30

35

Bezier vs Linear interpolation: Euler Rotations for 'hand'

A
ng

le
s i

n 
de

gr
ee

s

Frame

 Bezier: Euler X
 Bezier: Euler Y
 Bezier: Euler Z
 Linear: Euler X
 Linear: Euler Y
 Linear: Euler Z

(g) hand orientation.

Figure FC4.9: Comparison of bone orientations during Linear and Bezier Interpolation through
Inverse Kinematics.

4.2.2 Path Following using Blender features

The positioning and orientation of the target bone can also be made to follow a

path within Blender over a period of time by enabling the Follow Path constraint and

inserting keyframes for the offset property in Blender for animation purposes.

The arm is made to follow a circular path rotated 30°about its Y axis as shown

in the Figure FC4.10. The end-effector was made to go around the path once in 27.5

seconds (660 frames at 24 frames per second) in Experiment 1. In Experiment 2, the

end-effector was made to go complete the path twice in 27.5 seconds and the feedback

data from the motors was analyzed. The motion sequence from the experiment is seen

in Figure FC4.12.

The motor feedback from the shoulder joints and the elbow are compared with the

orientations as seen in Blender (see Figure FC4.11).

Another experiment was conducted to analyze tele-operation applications by per-

forming a simple task of reaching to an object, using the gripper to grasp it, change the

orientation of the object and then dropping it at another location. This task was per-
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(a) Orientation of the path in Blender. (b) Direction of the path.

Figure FC4.10: Inverse Kinematics: Path Following - Circle

formed ten times consecutively to analyze the ability of the robot’s end-effector reach

the desired position and orientation during the each execution of the task. The sequence

of motion of the arm and its representation in the Blender Game engine is shown in Fig-

ure FC4.13. The feedback from the motors is collected and plotted in Figure FC4.14.

For analyzing purposes, certain sections of the proposed motion are investigated to

determine the pose deviation from the desired position.

Therefore, through IK the end effector position can easily be achieved as the joint

angles are computed by performing vector algebra within Blender before communicat-

ing the angle values to the micro-controller using serial communication.
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Figure FC4.11: Inverse Kinematics: Path Following in Cirlce - Goal position versus Present
position during motion of the arm.



64

(a) (b)

(c) (d)

Figure FC4.12: Inverse Kinematics - Path Following.

4.3 Control Strategy 3: MoCap

Using the Delicode NI-Mate software, the joint orientations and postions are com-

municated to the Blender environment in OSC format where the joint data is decoded

and then applied onto the armature of a human-meta rig. Since we are only focusing

on the left arm, the joint orientations are re-mapped to the arm rig and then the motion

of the upper arm is recorded. This recorded motion is applied onto the robotic arm

by computing the joint angles and the bone orientations as captured in Blender. The

motion capture experiments were performed at a distance of 3 meters away from the

Kinect sensor.
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(a) Reaching. (b) Grasping and changing orientation.

(c) Carrying the object. (d) Holding the object.

(e) Dropping the grasped object.

Figure FC4.13: Inverse Kinematics - Teleoperation.
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Figure FC4.14: Inverse Kinematics: Path Following to grasp an object - Goal position versus
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4.3.1 MoCap: Wrist Joint

The Kinect can capture the wrist’s flexion and extension, and the radial1 (abduction)

and ulnar2 (adduction) deviation of the wrist although it is subjected to variation due to

the ToF artifacts in human pose estimation. Also, the radial and ulnar deviation of the

wrist as well as its extension and flexion as detected by the kinect are constrained to a

specific range.

In order to determine the maximum deviation captured by the Kinect when perform-

ing the wrist’s extension and flexion, a subject’s motion was recorded by the Kinect and

the graphs from the captured motion are analysed. Multiple recordings of such motions

are performed to determine the variations and limitations of Kinect’s motion capture.

The design of the wrist joint of the robotic arm limits the wrist extension to the value

of 35°. The Kinect is unable to measure forearm pronation and supination. However,

with the help of NI-mate, the orientation of the wrist can be applied to the forearm yaw

in order to perform pronation and supination of the wrist on the robotic arm.

The wrist’s range of motion i.e, its flexion, extension, abduction and adduction is

measured after recording the data in Blender using the Kinect. The typical Range of

Motion of a human wrist joint, its values determined by the Kinect and the maximum

range of motion of the robotic arm are tabulated and presented in Table TC4.3.

Table TC4.3: Comparison of Wrist’s Range of Motion. The typical range of motion values are
taken from [9].

Typical Range of Motion Kinect V2 robotic arm
Wrist Extension 70° 45.58° 35°
Wrist Flexion 75° 44.34° 75°

Wrist Abduction 20° 36.47° 70°
Wrist Adduction 30° 30.86° 60°

1Radial deviation, otherwise known as radial flexion, is the movement of bending the wrist to the thumb, or radial
bone side.

2Ulnar deviation is the movement of bending the wrist to the little finger, or ulnar bone side.
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(a) Wrist Extension - Kinect. (b) Wrist Extension - Blender (frame 166 in the
graph below).

(c) Wrist Flexion - Blender at frame 166. (d) Wrist Flexion - Blender (frame 210 in the
graph below).
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Figure FC4.15: Wrist Extension and Flexion.
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(a) Wrist Extension - Kinect. (b) Wrist Extension - Blender (frame 357 in in
the graph below).

(c) Wrist Flexion - Blender at frame 166. (d) Wrist Flexion - Blender (frame 410 in the
graph below.
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Figure FC4.16: Wrist Extension and Flexion with elbow flexion.
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(a) Wrist Extension - Kinect. (b) Wrist Extension - Blender (frame 379 in in
the graph below).

(c) Wrist Flexion - Blender at frame 166. (d) Wrist Flexion - Blender (frame 430 in the
graph below.
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Figure FC4.17: Wrist Abduction and Adduction.
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Moreover, Kinect captures the orientations of the joints and not the orientation of the

link between the joints. Therefore, after viewing the change in orientation of the empties

by viewing the motion capture data within Blender, the orientation of the appropriate

empties which correspond to a particular joint are projected onto the corresponding

connected link in the armature.

4.3.2 MoCap: Gripper Control on Robotic Arm

To ensure that the armb is facing according to the pose the person is making within

the FoV of the Kinect, add rotations and Basic +Orientation is enabled within Blender

and NI-Mate respectively. In addition to this, the armb bone is constrained to copy the

rotation of the Elbow as seen by the Kinect through NI-Mate. This is through manual

observation of the orientation of the elbow joint empty received by the Blender that

differs only in the Z of the quaternion value.

Each of the fingers has three joints namely:

• Metacarpophalangeal joint (MCP) – the joint at the base of the finger.

• Proximal interphalangeal joint (PIP) – the joint in the middle of the finger.

• Distal interphalangeal joint (DIP) – the joint closest to the fingertip.

Although the Kinect is able to track these joints through the NI-Mate software,

since the robotic arm does not include a hand like end-effector, the gripper is con-

trolled through sensing whether the hand is open or closed as detected by the Kinect

camera. The opening and closing of the hand is either determined by computing the

distance between the thumb tip and the hand tip joint or by determining the proximity

of the above mentioned joints of the finger with that of the thumb joints. In this study,

we have taken the proximity between the two joints (the Left Middle finger’s MCP and
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Left Middle finger’s DIP joints) to determine whether the hand is open or closed. The

distance factor is mapped to range of motion of the gripper motor in order to achieve

the action of opening and closing of the fist on the robotic arm.

The motion sequence (see Figure FC4.18) was recorded and applied on the biomimetic

arm to analyze and understand the end-effector’s abilities as well as to determine if the

end-effector actions can be executed using recorded motion. These actions can be repli-

cated in order to perform simple operations such as pick and drop an object. The action

is performed in a manner where the joints detected by the NI-Mate is not occluded to

avoid any errors during the measurement of the position and orientation of the joint.

(a) Starting pose using MoCap. (b) Reaching pose using MoCap.

(c) Grasping detected by the MoCap. (d) Carrying the object.
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(e) Dropping the grasped object.

Figure FC4.18: Motion Capture - Applying a recorded motion onto the robotic arm. The object
was placed to ensure that there is some load applied on the robotic arm’s end effector.
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(i) Applied load on the Gripper Dynamixel.

Figure FC4.19: Motion Capture: Applying a recorded motion onto the arm for pick/drop tasks.
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4.4 Default Characteristics of the System

The robot upper arm is composed of a total of 8 motors, each of which are respon-

sible for one degree of freedom and their role is tabulated in the Table TC4.4.

Table TC4.4: Dynamixel configuration for the robotic arm.

Dynamixel Model ID of motor DoF controlled Range of Motion (current)
MX-106 AT 10 Shoulder Pitch 180°
MX-64 AT 11 Shoulder Roll 90°
MX-64 AT 12 Arm Yaw 180°
MX-64 AT 13 Elbow Pitch 100°
AX-18 A 14 Forearm Yaw 300°
AX-18 A 15 Wrist Pitch 124.8
AX-18 A 16 Wrist Roll 101.95°
AX-18 A 17 Gripper 74.707°

The Dynamixel MX-series actuators provide 360 degrees position control with a

resolution of 0.088°and the AX-series actuators provide 300 degrees position control

with a resolution of 0.29°. However, in this study the motors are actuated only after

the change in the position from the Blender virtual environment is greater than 1°. The

transient response for the Dynamixels present on the robotic arm to reach a certain

steady state is plotted and tabulated below.

• Shoulder Pitch - (Figure FC4.20 and Table TC4.5)

• Arm Yaw - (Figure FC4.21 and Table TC4.6)

• Elbow Pitch - (Figure FC4.22 and Table TC4.7)

• Forearm Yaw - (Figure FC4.23 and Table TC4.8)

• Wrist Roll - (Figure FC4.25 and Table TC4.10)

• Wrist Pitch - (Figure FC4.24 and Table TC4.9)

• Shoulder Roll and Gripper - (Figure FC4.26 and Table TC4.11)
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(b) Delay for 45°.
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(c) Delay for 90°.
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(d) Delay for 180°.

Figure FC4.20: Delay for Shoulder Pitch Dynamixel.

Table TC4.5: Time delay to reach goal position by Shoulder Pitch Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Variation(degree)
10 270° 240° 1.143 0.4396

270° 225° 1.099 0.879
270° 180° 1.296 1.319
270° 90° 1.770 0.439
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Figure FC4.21: Delay for Arm Yaw Dynamixel.

Table TC4.6: Time delay to reach goal position by Arm Yaw Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Error (degrees)
12 90° 180° 0.278 0.2637

90° 270° 0.584 0.2637
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(b) Delay for 90°.

Figure FC4.22: Delay for Elbow Pitch Dynamixel.

Table TC4.7: Time delay to reach goal position by Elbow Pitch Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Error (degrees)
13 180° 225° 0.198 0.3156

180° 270° 0.348 0.5274
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(b) Delay for 300°.

Figure FC4.23: Delay for Forearm Yaw Dynamixel.

Table TC4.8: Time delay to reach goal position by Forearm Yaw Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds)
14 0° 300° 0.88

60° 240° 0.368
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(b) Delay for Maximum Adduction.

Figure FC4.24: Delay for Wrist Pitch Dynamixel.

Table TC4.9: Time delay to reach goal position by Wrist Pitch Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Error (degrees)
15 150° 80° 0.191 0.5859

150° 205° 0.464 0.8789
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(a) Delay for Maximum Extension.
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(b) Delay for Maximum Flexion.

Figure FC4.25: Delay for Wrist Roll Dynamixel.

Table TC4.10: Time delay to reach goal position by Wrist Roll Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Error (degrees)
16 150° 180° 0.175 0.8789

150° 75° 0.287 0.2929
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(b) Delay for the Gripper to reach open posi-
tion.

Figure FC4.26: Delay for Shoulder Roll and Gripper Dynamixel.

Table TC4.11: Time delay to reach goal position by Shoulder Roll and Gripper Dynamixel.

ID of motor From (degrees) To (degrees) Delay (seconds) Error (degrees)
11 270° 240° 1.422 1.6703
17 99.71° 175.95° 0.208 0.5859
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4.5 Results and Observations

The observed results show correlation between the joint orientations performed in

virtual space and the joint orientations performed in the actuator space with a variation

of 2-5 degrees at the maximum. The cause for the variations are described later in this

section under the limitations of the system. The respective code files for the experiments

are documented in the Appendix E.

4.5.1 Forward Kinematics

In Forward Kinematic control of the robotic arm, the final pose (steady state) reached

by the robotic arm differed from the actual position of the arm as viewed in Blender by

a certain margin (see Table TC4.12). In other words, the position reached by a certain

Dynamixel motor differs in value from the desired position value as seen in the Blender

environment.

Table TC4.12: Forward Kinematics final orientation of end-effector.

ID of motor Goal Position (Final Pose) Present Position (Final Pose) Error (degrees)
11 238.153 240.967 2.813
13 234.989 233.934 1.055
14 199.804 198.925 0.879
16 177.246 176.367 0.879

4.5.2 Inverse Kinematics (Same Pose as FK)

Similarly, in Inverse Kinematic control of the robotic arm, the final pose (steady

state) reached by the robotic arm differed from the actual position of the arm as viewed

in Blender by a certain margin (see Table TC4.13).
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Table TC4.13: Inverse Kinematics final orientation of end-effector.

ID of motor Goal Position (Final Pose) Present Position (Final Pose) Error (degrees)
10 274.022 274.637 0.615
11 244.747 247.12 2.373
12 180.44 180.3956 0.35
13 235.956 234.285 1.67
14 209.765 208.88 0.879
16 177.246 176.074 1.171

4.5.3 Inverse Kinematics (Path Follow: Circle)

In this particular experiment, the arm was made to go around a circular path (see

Figure FC4.10) once and twice respectively within 27.5 seconds. The positions reached

by the Dynamixels were recorded from the motors appeared to differ, although by a

small margin, during the execution of the experiment. As the robotic arm completed

following the path twice within the given interval, the values reached by the Dynamixels

differed at similar points on the circular path. For instance, in Figure FC4.11f, the values

reached by the Elbow Pitch Dynamixel during the first and second run are 217.1429 and

219.1648 respectively. These variations are most likely due to actuating the Dynamixels

after the change in the value as seen from within Blender is greater than 1°or due to the

load of the distal end of the robotic arm i.e, the forearm and the end-effector part.

4.5.4 Inverse Kinematics (Pick up/Drop Task)

In this particular experiment, the arm was made to follow a path to reach an ob-

ject,change its orientation, and drop it at the starting position. The task was executed

ten times. However, for analysis purposes, only a certain section of the time duration is

considered. Although the positions reached by the Dynamixels were recorded from the

motors appeared to differ, although by a small margin, during the execution of the ex-

periment, the robot’s end effector successfully reached the object and was able to grasp

it.
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It is observed that during the length of the experiment, the positions reached by the

robotic arm are mostly consistent. However, in Figure FC4.14, the values reached by

the Dynamixels during every run when grasping the object are tabulated below:

Table TC4.14: Variation of Dynamixel values during multiple runs. The value units are in
degrees(°).

1st 2nd 3rd 4th

Motor ID Goal Present Goal Present Goal Present Goal Present
10 252.044 253.538 252.044 253.450 252.044 253.538 251.077 252.659
11 256.879 258.110 256.879 257.934 256.879 258.110 258.813 259.692
13 248.967 247.912 248.967 248.0 248.967 247.912 249.934 248.615
14 64.615 64.527 62.945 62.763 66.021 66.109 64.615 64.527
17 45.714 44.307 45.714 43.956 45.714 44.043 45.714 44.307

In the Table TC4.14, the motor having its ID as 17 is the Gripper motor. The reason

for its variation in the position value is due to the outward thrust by the deformation

caused during grasping of the object. The variation of the goal position values during

multiple runs is of the order of 1°. This is likely due to actuating the motors from values

computed within Blender between two consecutive frames do not meet the required

required difference of 1°to actuate the motors.

4.5.5 MoCap (Pick up/Drop Task)

To increase the intuitiveness of kinematic control, motion imitation allows the kine-

matics of a redundant robot to be controlled simply by human motion [6,7]. In this

experiment, the human motion was recorded using the Kinect and then applied onto

the robotic arm to perform a Pick up and Drop task. The object was positioned to the

left side of the robotic arm. The opening and closing of the gripper was achieved by

computing the distance between the Left Middle Finger’s Metacarpal and Distal joints

as observed by the NI-Mate add-on using the Kinect camera. The distance between

these two joints during opening and closing of the fist was viewed within Blender and

then a threshold value was applied to determined whether to actuate the gripper to open
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or close respectively. As seen in Figure FC4.19g, when the distance between the two

joints is below 0.5 (in Blender’s Coordinate System), the gripper was made to close

accordingly in Figure FC4.19h. The load applied on the Dynamixel during this task is

seen in Figure FC4.19i which shows that the object has been grasped.

In the Figure FC4.19c, the rotation of the arm joint as seen in Blender was twice

as that of the actual motion. The arm’s yaw when performing the task was changed to

nearly 90°, but the NI-Mate viewed the joint rotation to be twice that of the actual value.

However, due to constraints placed on the robotic arm, the arm yaw was limited to 90°.

To ensure that the rotation value of the arm yaw as computed by NI-Mate is same,

the Copy Rotation constraint in the bone properties panel of the Blender has an influence

factor. This value cab be changed to a factor of 0.5 to ensure that values incoming from

the NI-Mate get multiplied by this factor before applied onto the armature bones.

However, this method cannot precisely control a robot’s end-effector on a given tra-

jectory for two reasons. One reason is the mechanical discrepancy between the human

arm and the robotic arm, and the other reason is the inaccuracy of the recorded human

motion.

4.6 Study Limitations and Improvements

The findings of this study have to be seen in light of some limitations namely:

• The primary limitation to the generalization of these results is the fact that the

Dynamixels are actuated only after there is a change of 1°in the orientation of

any bone as viewed in Blender. Though the Dynamixel MX and AX series pro-

vide a resolution of 0.088°and 0.29°respectively, the motion of the robotic arm is

drastically changed. The primary reason for choosing the resolution of 1°is that
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repetitive calls to set the position of the Dynamixel using the Arbotix-M micro-

controller causes the motor to shutdown by throwing an Overload error and the

fact that the Arbotix-M has a lower clock frequency than compared to that of the

Dynamixels.

• The current baud rate is set to 115200 which can also be increased as the Dy-

namixel MX series and AX series have a 4.5 Mbps and 1 Mbps maximum baud

rate specification.

• Measurements using Kinect involve the placement of Kinect is a limiting factor.

The Kinect is designed to track the front side of the user and motion tracking

suffers from occlusions (e.g. self-occlusion by other body parts and due to sur-

rounding objects being detected as body parts.)

• Real-time Motion Capture is Limited to the control of two Dynamixels i.e., the

shoulder pitch and the shoulder roll. During real-time tracking, the voltage across

the data line along which the values are sent to the Dynamixels is at 5V. However,

as more Dynamixels are daisy-chained, the voltage across the data pins on the

Arbotix-M board diminishes to a value lesser than 3V. As the serial communica-

tion at a TTL level always remains between the limits of 0V and Vcc, which is

often 5V or 3.3V, any value lower than this would result in no actuation of the

motors.

• Stability of the support off of which the arm is hanging may induce errors dur-

ing operation as the Dynamixels, despite their compact size, can produce high

torques which may result in a reaction force causing a change in course of the

arm trajectory.

The system’s performance can be increased to achieve better accuracy and precision

by:
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• The margin of error in reaching the goal position by the Dynamixel modules can

be fine tuned by either setting the complaince margins or by applying Propor-

tional, Integral, Derivative (PID) gains to the motor.

• The resolution of the actuation can be improved by mapping the values from 0°-

360°to the range of the Dynamixels (0-4095 for MX and 0-1024 for AX) and

setting an appropriate value as the required threshold.

• A stable support can improve the results of the experiments performed.

Further improvements to the system include:

• Applying PID gains values to the Dynamixel servos to reduce the error margin of

the system.

• The Arbotix-M controller incorporates an XBee socket which can be used to add

wireless communications to the board by plugging in an XBee module. This will

create a wireless serial connection, allowing the Arbotix-M present on the slave

device to another micro-controller or a computer through a second XBee module.

• The system can be interfaced with a camera to provide visual feedback for tele-

operation purposes as well as to accomplish tasks such as object detection and

manipulation using computer vision techniques.

• The integration of a third party end-effector can make the system suitable for

manipulation tasks on top of reaching and grasping actions.

• With the introduction of a better micro-controller or a microprocessor, real-time

motion capture with the Kinect may be achieved.

• Long-term testing with the higher payloads and potential impacts with the envi-

ronment can help in determining the durability of the system.
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CHAPTER 5

CONCLUSIONS

Telerobotics is one of the essential research topics, which is widely applied into

assistive and medical rehabilitation, and even in the manufacturing processes in the

industry. This study implements a telerobotic system with 8-DoF that mimic the human

arm motion using a Game Engine as an interface for simulation and emulation purposes.

We believe that the current robot platform and interface is highly suitable for telerobotic

purposes, and can be of use to researchers at the intersection of cognitive science and

human motor control with robotics.

In this study, two control strategies to drive an 8-DoF robot arm are presented. With

the use of motion capture technology such as the Kinect, the robot arm was able to

reproduce the actions of a human operator to perform simple tasks such as reaching

and grasping objects. A visual representation of the human arm is modeled in Blender

Game Engine which formed the basis of understanding the kinematics for the human

upper limb and use of Blender as a visualization, simulation and emulation tool to gain

qualitative information about the robot’s behavior and effectiveness. Through inverse

kinematics using Blender Game Engine, new human-like motions can be modeled to

perform various telerobotic tasks. This study demonstrated the abilities of Blender as

an interface to control and program the robot arm, as well as providing support for mo-

tion capture using NI-Mate to capture human motions in real-time. The characteristics
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of the robot arm are highlighted and the mapping of the physical arm design to that

of the virtual arm model is discussed. In addition to this, different control strategies

were applied onto the robot arm and compared to quantify its effectiveness, accuracy,

and precision in the execution of reaching and grasping tasks applicable to telerobotic

scenarios. Finally, the results and limitations of the current system are discussed. In the

future, the entire system can be upgraded to achieve a some degree of autonomy with

the integration of a camera to enable human-robot interaction with the environment.
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APPENDIX A

INSTALLING DRIVERS AND SOFTWARES FORMOTION

CAPTURE USING KINECT

A.1 Getting started with Microsoft Kinect for Windows 2 (V2)

A.1.1 Setting up MoCap using Kinect V2

This section aims at implementing a motion capture system using Microsoft Kinect,

developing the interface using Blender to capture motion as well as analysing measure-

ments from captured or recorded motion data. The section is divided into several stages

which include experimental setup, data acquisition and analysis of the skeletal tracking

data obtained from the Kinect.

To setup a motion capture system, refer to FA1.1 to connect the Kinect V2 to your

system.

Although the NI Mate installation also installs the required drivers for the Kinect V2,

it is important to know what these drivers are capable to make the sensor technology

perform.

Note: On first plugin after installation of required drivers, the firmware on the device

will be updated. This may result in the device enumeration happening several times in
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Figure FA1.1: Kinect to Windows 10 PC

the first minute.

A.1.2 Kinect for Windows Runtime 2.2.1811

To install the Kinect for Windows Runtime:

1. Make sure the Kinect sensor is not plugged into any of the USB ports on the

computer.

2. Download and extract the contents of KinectRuntime-v2.2 1811.zip to a location

on your PC.

3. Right click kinectsensor.inf and click Install. Do not run KinectRuntime-x64.msi

directly.

4. Once the Kinect for Windows Runtime driver has completed installing success-

fully, ensure the Kinect sensor is connected to the Kinect for Windows power hub
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and the power hub is plugged into an outlet. Plug the USB cable from the power

hub into a USB 3.0 port on your computer. The drivers will load automatically.

A.1.3 Kinect for Windows SDK 2.0

To install the Kinect for Windows SDK 2.0:

1. Make sure the Kinect sensor is not plugged into any of the USB ports on the

computer.

2. From the download location, double-click on KinectSDK-v2.0 1409-Setup.exe

3. Once the Kinect for Windows Runtime driver has completed installing success-

fully, ensure the Kinect sensor is connected to the Kinect for Windows power hub

and the power hub is plugged into an outlet. Plug the USB cable from the power

hub into a USB 3.0 port on your computer. The drivers will load automatically.

Once the Kinect for Windows SDK has completed installing successfully, you can

verify that installation has completed by launching Device Manager and verifying

that ”KinectSensor Device” exists in the device list.

A.1.4 Kinect V2 Configuration Verifier

Kinect Configuration Verifier is a tool designed to verify your PC if it can run the

Kinect V2 sensor. If any part of your system is determined to be incompatible with the

sensor, it will be flagged. The program will display system information about CPU, OS,

RAM, USB Controller or GPU.
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A.1.5 Bug Fixes

First, visit ”Microphone privacy settings” and turn on the switch for ”Allow desktop

apps to access your microphone”. In Device Manager, you should have ”WDF Kinect-

Sensor Interface 0” with driver 2.2.1811.10000 (provided automatically). You should

also see the Kinect as an enabled audio recording device, both in Device Manager, and

under the advanced ”Sound” settings menu. If it’s disabled, in either place, the kinect

reconnects every 8-10 seconds and gets disconnected.

Also, Kinect for Windows V2 periodically disconnects from the Windows 10 ver-

sion 1809 system. Though the RGB and depth channel may provide data in the Kinect

Studio, the video stream stops running after 5-6 seconds and remains static for 1-2 sec-

onds. This is because no new frame was received and the connection from the Kinect

was actually lost as the Kinect Service.exe process keeps restarting when viewed form

the Task Manager.

The Kinect service is probably designed to test the microphone, and so, if it’s not

able to access the microphone, the Kinect repeatedly disconnects and reconnects until

it has sound input. Moreover, in Device Manager, the Xbox NUI Sensor constantly

disappears and reappears when the interruptions occur. The Microsoft Forum suggested

either to disable Kinect audio or to enable the audio device. However, disabling and

enabling the microphone from the system, and not the kinect, fixes the problem.

A.2 Delicode NI Mate 2.14

Open Delicode NI Mate. On the left, all currently connected sensors are listed. The

status of each sensor as well as some controllers are also listed. If you click on > beside

the sensor, you can choose to transmit the kind of data you want to transmit over OSC:

skeletal tracking; controller tracking; face analysis; face shapes; and triggers.
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Figure FA1.2: Detecting a User in NI mate

Click on Skeleton Tracking → Coordinates and choose from the options given. It

is easier to choose the Sensor as origin. Click on the checkbox for Skeleton Tracking

from the menu for transporting the coordinates of the joints from kinect to blender for

animation purposes as shown in FA1.3. This component is used for finding a human

skeleton out of the live feed and computing its position and orientation.

Figure FA1.3: Skeleton Tracking in NI mate
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to restart your device or sensor, use the Start Sensor or Stop Sensor at the top right.

NI mate uses a feature called GPU texture transfer which speeds up the process of

receiving the live feed from a sensor by using the graphics card for transferring the

data. Although this promotes significant speedup, unfortunately it does not work on all

systems. If any crashes occur in NI mate, this setting should be the first one to disable

in Preferences → Use GPU Texture Transfer. Refer to FA1.4 to enable or disable the

GPU texture Transfer option.

Figure FA1.4: Disable GPU Texture Transfer

Once all the above mentioned steps are completed, the system is ready to track

human motion, i.e, all the 25 joints of the human body are ready to be tracked by the NI

mate software. The IP address and port specify where all out-going OSC traffic is sent

to. In most cases, leaving 127.0.0.1 (localhost, the computer currently being used) with

the default port of 7000 are the desired settings.

The data being transmitted follows the OSC format by specifying an address and

its content. The address refers to the value the OSC message should control in the

receiving software. In NI mate, a good example is the name of some skeleton joint. The

content is a list of values that can be strings or numbers. For instance, an OSC message



103

look as follows:

/ s k e l e t o n l e f t h a n d 5 . 2 2 . 1 −20.7 0 . 9 7 0 . 2 0 .5810 0 .062

The message contains the address, beginning with the protocol compliant forward

slash symbol, with the content being 3 position floats and 4 orientation floats.

This concludes the NI mate section.

A.3 Blender 2.78

In order to interface Blender with NI mate, the first step is importing the NI mate

Blender add-on. Open up Blender and go to File→UserPre f erences or press Ctrl +

Alt+U . Click the Add-on tab and then Install Add-on. Locate the animation delicode ni mate.py

and click Install From File as shown in FA1.5. The file is available at https://

ni-mate.com/download/.

Figure FA1.5: NI Mate Blender Add-on

https://ni-mate.com/download/
https://ni-mate.com/download/
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Figure FA1.6: Enabling Add-on

The Animation Delicode NI mate add-on should now be visible, as shown in FA1.6,

under the UserPre f erences→ Add−ons tab. Enable it by clicking the checkbox to the

right of the plug-in.

Figure FA1.7: NI Mate Panel in Blender

If the User preferences window is closed, you should notice the Delicode NI mate
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panel to the left as shown in FA1.7.

In order to check if NI mate is able to transmit skeletal data, shift over to the Deli-

code NI mate software, and check the box beside Skeleton Tracking. In Blender, click

on the NI mate tab in the tool menu. Click on the Empties which will create entities

that will represent the joint data being tracked from the Kinect once the Start button is

clicked in the plug-in menu.

Figure FA1.8: Skeleton Tracking represented by Empties
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APPENDIX B

SETTING UP DYNAMIXEL

For the robot to function correctly, each servo needs to be set to a unique ID be-

fore they can be programmed to drive the arm. Correspondingly, U2D2(FA2.1) is a

USB communication converter that enables to control and to operate the Dynamixel

with the PC. U2D2 does not supply power to the Dynamixel, therefore, an external

power supply should be used to provide power to the Dynamixel. U2D2 coupled with

SMPS2Dynamixel(FA2.1), which also allows connections to an external power supply,

allows to manage Dynamixel’s firmware and to check it’s status using the Roboplus

software as shown in figure FA2.2.

(a) U2D2 (b) SMPS2Dynamixel

Figure FA2.1: Setting Dynamixel IDs with U2D2 and SMPS2Dynamixel components.
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Figure FA2.2: PC to Dynamixel where power line represents SMPS2Dynamixel component in
figure FA2.1b

B.1 Connecting Dynamixel

1. Connect Dynamixel to PC through U2D2. (see FA2.2)

2. Connect the external power supply of 12V-5A to SMPS2Dynamixel and couple it

to the other connection port in the Dynamixel to supply the power. Notice the red

LED on the Dynamixel switch on and off. If it does so, then the servo is powered

properly.

3. Select the communication port.

4. Search Dynamixel. The search range can be set, if necessary.

5. Any Dynamixels detected can be checked in the list on the left.

B.2 Firmware

Firmware is a program installed in Dynamixel which controls it. There are two

protocols that differentiate the firmware. Previous Dynamixels such as the AX model

servos work with their standard libraries designed for programming using Arduino and

Arbotix microcontrollers. According to Trossen Robotics Support, the MX-106 will

also work with these libraries, however the protocol version has to be reverted to pro-

tocol 1. As the new MX servos are coming with firmware / protocol 2, it is required to

download an older version of Roboplus Software that comprises of Dynamixel wizard
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that has protocol 1.0 firmware for the 106 servo and manually reset the servo using that

software. For instance, the MX servos with firmware v42 or above will comprise of

protocol 2.0. It is required to do so as the protocols differ in the functionality of some

of the registers. In this study, the firmware used is v41.

Another software that can be used is the Dynamixel Wizard 2.0 that can allow for

plotting graphs to track the Dynamixel’s voltage, current, load, present position and

goal position.

B.2.1 Recovery

When Dynamixel detection fails, ensure that it is properly wired. However, if prob-

lems persists, the Dynamixel firmware needs to be restored. After firmware restoration,

the ID and baud rate values have to be set again.

B.3 Testing

Once the search is complete, the searched Dynamixel is appeared on the left of the

list. The servo ID can be changed and later, signals can be sent to control and move

particular Dynamixel using the set ID through programming the Arbotix-M.

Following this, programming the ArbotiX-M requires an FTDI-to-USB device which

also may be used to power the board without using an external power supply for testing

purposes. Here, the power jumper is moved so that it connects the middle pin and the

USB pin as shown in figure FA2.3. However, since the Dynamixel servomotors require

a nominal voltage of 10-12 volts, an external power source is required to power the

board to eventually drive the robotic arm. Therefore, the power jumper is moved so that

it connects the middle pin and the VIN pin as shown in figure FA2.3.
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Figure FA2.3: Power Jumper for ArbotiX-M.

Figure FA2.4: ArbotiX-M to FTDI-USB Connection.

The ArbotiX-M is connected to FTDI-USB connection is shown in figure FA2.4. As

the Dynamixel servomotors are designed to be modular and capable of daisy-chaining,

the design of the robot arm allows the servos to be connected freeing up space as its

open, low-density structure also improves motor heat dissipation thanks to freer air cir-

culation according to [1]. Therefore, it is easier to incorporate motors into the design of

the robot as they are connected with each other in a series using the three-pin connec-

tors.

The FTDI port is a dual programming and serial port. By connecting an FTDI

device (like a FTDI Cable or a UARTSBee you can program the ArbotiX and relay

serial communications. The FTDI port and the XBee socket share a serial port, so only

one can be used at a time. To program the ArbotiX while an XBee is connected, you

must use an ISP programmer.

The ArbotiX M does not have a dedicated I2C port, but it still supports the I2C

protocol on pins 16 and 17 as tabulated in TA2.1.

I2C Pin Arbotix-M Pin
SCL 16
SDA 17

Table TA2.1: I2C Pins on Arbotix-M.
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APPENDIX C

FINGER RIGGING AND WEIGHT PAINTING USING

BLENDER

C.1 Finger Rigging using Blender

As previously discussed in chapter 2, the NI-Mate add-on provides functionality

to track all the fingers. This functionality allows for the end-effector (gripper) control

of virtual arm in Blender using skeletal tracking data from Kinect V2 with regards to

MoCap.

Additionally, the individual fingers of the human hand can be rigged in blender to

without the need for Inverse Kinematics constraints. Using a few simple constraints

and through the process of weight painting, a human hand model is rigged to obtain a

rig that allows us to have finer control by being able to control the fingers, proving to

be very feasible for animation purposes.

The technique is implemented using the armature or bones with rotation constraints

to act as the joints in the finger of a human hand. On top of these constraints, weight

paint is a brush type found in Blender which allows the user to create a heatmap which

corresponds to the influence of the bone on an mesh object with vertices. Weight paint

is used in many situations, and here are a few instances where it is used to simplify the

process of rigging and applying modifiers to an object:
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• Character Rigging: Through the process of weight painting, the user can deter-

mine how much of an effect moving a bone on the model will have on a set of

vertices that form the model.

• Physics Simulation: This process also allows the user to define which parts of an

object will be affected more or less by the modifiers.

In order to get a better visual appearance and also to improve the process of ani-

mation, the bone appearance of Blender is replaced with other shapes to help in under-

standing the bone movements.

(a) Human Hand model. (b) Rigged Human Hand.

Figure FA3.1: Rigging Fingers in Blender.

Figure FA3.2: Controlling the finger curl using bone constraints.
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(a) Pinky Metacarpal Influence (b) Pinky Proximal Influence (c) Pinky Distal Influence

(d) Ring Metacarpal Influence (e) Ring Proximal Influence (f) Ring Distal Influence

(g) Middle Metacarpal Influ-
ence

(h) Middle Proximal Influence (i) Middle Distal Influence

(j) Index Metacarpal Influence (k) Index Proximal Influence (l) Index Distal Influence

Figure FA3.3: Adding weights to the bones in the armature using Weight Painting in Blender.
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APPENDIX D

FORWARD AND INVERSE KINEMATICS

D.1 FK: Denavit-Hartenberg Convention

In order to determine the end-effector position in real-world scenario, the following

four transformation parameters known as D–H parameters are needed to be determined:

• d - offset along previous z to the common normal.

• θ - angle about previous z, from old x to new x.

• a - offset along previous z to the common normal.

• α - offset along previous z to the common normal.

The reference frames for the joints are laid out as follows:

• the z-axis is in the direction of the joint axis.

• x-axis is parallel to the common normal: xn = zn× zn−1 (or away from zn−1).

• If there is no unique common normal (parallel z axes), then d is a free parameter.

The direction of xn is from zn−1 to zn.
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• y-axis follows from the x and z-axis by choosing it to be a right-handed coordinate

system.

The Denavit-Hartenberg parameters for the current robot arm (till the wrist joint

excluding elbow-forearm yaw link) are tabulated in the Table TA4.1.

Link θ d(cm) a(cm) α

1 θ1 6.6* 0 90°
2 θ2 0 0 90°
3 θ3 0 0 90°
4 θ4 28* 0 90°
5 θ5 0 25* 90°

Table TA4.1: Dynamixel configuration for the robotic arm. *The distance between the links are
approximate as they are distances between the centers of two Dynamixel Actuators present in
the structure.

The position of the end-effector (in this case, till the wrist) can be computed given

the individual joint angles (here θ1, θ2, θ3, θ4, θ5) about their rotation axis.

D.2 Overview of Jacobian IK

The Jacobian Solver in Blender is an iterative approach to solve the inverse kinemat-

ics problem to determine the change in orientations of every joint present in the chain

to reach the desired position.

Jacobian methods have three main steps from a top-down perspective:

1. Find the joint configurations: T

2. Compute the change in rotations: dO

3. Compute the Jacobian: J
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D.2.1 Joint Configurations

As all the joints are revolute, O is a pose vector which represents the initial orienta-

tion of every joint, T is the pose vector which represents the final orientation of every

joint, such that the end effector reaches its target position and dO is the vector which

represents the change in orientation for each joint, such that the kinematic chain reaches

T from O.

T = O+dO×h

where h is just a simulation step that can be tuned.

D.2.2 Compute Change in Orientation

The change in orientation is calculated using:

V = J×dO

where J is the Jacobian and V is the change in spatial location i.e., V = T -E. The

Jacobian is a matrix which represents the relationship between the position of the end

effector and the rotation of each joint.

J−1V = J−1JdO

J−1V = dO

dO = JTV
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A rough approximation to the Jacobian Inverse that works in many simple cases is

replacing the Jacobian Inverse with the Jacobian Transpose. The Jacobian Transpose

always exists, as opposed to the Jacobian Inverse and it is computationally less expen-

sive.

D.2.3 Compute Jacobian

Each term in the Jacobian matrix represents how a change in the specified joint angle

effects the spatial location of end effector. For instance, the first column of the matrix

shows how much the end effector position would change in X-Y-Z coordinate space, if

Joint A’s angle is changed by a differential amount.

J =


(RA(E−A))X (RB(E−B))X (RC(E−C))X

(RA(E−A))Y (RB(E−B))Y (RC(E−C))Y

(RA(E−A))Z (RB(E−B))Z (RC(E−C))Z



where RA is the axis of rotation of joint A. E is the position of the end effector, as

before and A is the position of joint A.

Then number of joints in the articulated body determines the number of columns in

the Jacobian.
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APPENDIX E

CODE

E.1 Blender: Computing Bone Angles

import bpy

import math

import t ime

import s y s

import s e r i a l

import g lob

import os

from math import d e g r e e s

import numpy as np

from m a t h u t i l s import V ec to r

os . sys tem ( ’ c l s ’ )

# a s s i g n i n g COM p o r t and Baud r a t e f o r S e r i a l Communicat ion

p o r t = ’ ’ . j o i n ( g lob . g lob ( ” / dev / ttyUSB * ” ) )

s e r = s e r i a l . S e r i a l ( ’COM4’ ,115200)

p r i n t ( ” c o n n e c t e d t o : ” + s e r . p o r t s t r )

# s e t t i n g t h e armature as t h e a c t i v e o b j e c t i n B l e n d e r

ob = bpy . d a t a . o b j e c t s [ ’ Armature ’ ]

bpy . c o n t e x t . s c e n e . o b j e c t s . a c t i v e = ob

# s e t t i n g pose mode f o r c o n t r o l l i n g t h e arm

bpy . ops . o b j e c t . mode se t ( mode= ’POSE ’ )

# v a r i a b l e s f o r comput ing bone o r i e n t a t i o n s

s h o u l d e r = ob . pose . bones . g e t ( ” s h o u l d e r ” )

arma = ob . pose . bones . g e t ( ” arma ” )

armb = ob . pose . bones . g e t ( ” armb ” )

armc = ob . pose . bones . g e t ( ” armd ” )

armd = ob . pose . bones . g e t ( ” armd ” )

hand = ob . pose . bones . g e t ( ” hand ” )

thumb = ob . pose . bones . g e t ( ” thumb . 0 0 1 ” )

b o n e s l = [ s h o u l d e r , arma , armb , armc , armd , hand , thumb ]



118

# check f o r bones p r e s e n t i n B l e n d e r

f o r bones in bpy . c o n t e x t . s c e n e . o b j e c t s . a c t i v e . pose . bones :

# use t h e decompose method t o g e t m a t r i c e s

loc , r o t , s c a = bones . m a t r i x b a s i s . decompose ( )

# or use t h e t o q u a t e r n i o n method t o g e t m a t r i c e s

r o t = bones . m a t r i x b a s i s . t o q u a t e r n i o n ( )

# p r i n t t h e bones a v a i l a b l e

p r i n t ( bones )

def d o t p r o d u c t ( v1 , v2 ) :

””” T h i s f u n c t i o n computes d o t p r o d u c t o f two v e c t o r s . ”””

re turn sum ( ( a *b ) f o r a , b in z i p ( v1 , v2 ) )

def mag ( v ) :

””” T h i s f u n c t i o n computes magn i tude o f two v e c t o r s . ”””

re turn math . s q r t ( d o t p r o d u c t ( v , v ) )

def a n g l e ( v1 , v2 ) :

””” T h i s f u n c t i o n computes a n g l e be tween two v e c t o r s . ”””

re turn ( np . a r c c o s ( d o t p r o d u c t ( v1 , v2 ) / ( mag ( v1 ) * mag ( v2 ) ) ) ) * ( 1 8 0 / math . p i )

def g e t R o l l ( bone ) :

mat = bone . m a t r i x . t o 3 x 3 ( )

q u a t = mat . t o q u a t e r n i o n ( )

i f abs ( q u a t .w) < 1e−4:

r o l l = math . p i

e l s e :

r o l l = 2* math . a t a n ( q u a t . y / q u a t .w)

re turn r o l l

def sendAng le s ( ) :

# i n s e r t v i s u a l loc , r o t , s c a l e i f needed

f o r b in b o n e s l :

b . k e y f r a m e i n s e r t ( ’ r o t a t i o n e u l e r ’ , o p t i o n s = {”INSERTKEY VISUAL”})

# o r i e n t a t i o n o f arma w i t h r e s p e c t t o Globa l A x i s i n B l e n d e r

arma px = math . d e g r e e s ( Ve c to r ( ( 1 , 0 , 0 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # +x

arma py = math . d e g r e e s ( Ve c to r ( ( 0 , 1 , 0 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # +y

arma pz = math . d e g r e e s ( Ve c to r ( ( 0 , 0 , 1 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # +z

arma nx = math . d e g r e e s ( Ve c to r ( ( −1 ,0 ,0 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # −x

arma ny = math . d e g r e e s ( Ve c to r ( (0 , −1 ,0 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # −y

arma nz = math . d e g r e e s ( Ve c to r ( (0 ,0 , −1 ) ) . a n g l e ( arma . t a i l − arma . head ) ) # −z

### REACHY ARM ANGLES CALCULATIONS

# s h o u l d e r P i t c h

s h o u l d e r P i t c h = arma py

i f ( s h o u l d e r P i t c h > 180) :

s h o u l d e r P i t c h = 180

# s h o u l d e r R o l l

i f ( a r m a z a n g l e 1 > 90) :

s h o u l d e r R o l l = 185 − math . d e g r e e s ( ( arma . t a i l − arma . head ) . a n g l e ( s h o u l d e r . t a i l − s h o u l d e r . head ) )
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i f ( a r m a z a n g l e 1 < 90) :

s h o u l d e r R o l l = 175 + math . d e g r e e s ( ( arma . t a i l − arma . head ) . a n g l e ( s h o u l d e r . t a i l − s h o u l d e r . head ) )

i f ( s h o u l d e r R o l l > 177) :

s h o u l d e r R o l l = 177

#armYaw

r o t = ( np . d e g r e e s ( l i s t ( armb . m a t r i x b a s i s . t o q u a t e r n i o n ( ) . t o e u l e r ( ) ) ) )

armYaw = i n t ( r o t [ 1 ] ) +180

# e l b o w P i t c h

e l b o w P i t c h = 180 + math . d e g r e e s ( ( armb . t a i l − armb . head ) . a n g l e ( armc . t a i l − armc . head ) )

i f ( e l b o w P i t c h > 280) :

e l b o w P i t c h = 280

# forearmYaw

armcx = armc . x a x i s

armdx = armd . x a x i s

r o t = ( np . d e g r e e s ( l i s t ( armd . m a t r i x b a s i s . t o q u a t e r n i o n ( ) . t o e u l e r ( ) ) ) )

forearmYaw = i n t (75+ i n t ( r o t [ 1 ] ) )

# w r i s t r o l l and w r i s t p i t c h

e x t e n s i o n = i n t ( math . d e g r e e s ( armd . z a x i s . a n g l e ( hand . z a x i s ) ) )

f l e x i o n = i n t ( math . d e g r e e s ( armd . z a x i s . a n g l e ( hand . z a x i s ) ) )

a b d u c t i o n = i n t ( math . d e g r e e s ( armd . x a x i s . a n g l e ( hand . x a x i s ) ) )

a d d u c t i o n = i n t ( math . d e g r e e s ( armd . x a x i s . a n g l e ( hand . x a x i s ) ) )

up down = i n t ( math . d e g r e e s ( armd . z a x i s . a n g l e ( hand . y a x i s ) ) )

l e f t r i g h t = i n t ( math . d e g r e e s ( armd . x a x i s . a n g l e ( hand . y a x i s ) ) )

# w r i s t r o l l

i f ( up down > 0 and up down < 90) : #up

e x t e n s i o n = i n t ( math . d e g r e e s ( armd . z a x i s . a n g l e ( hand . z a x i s ) ) )

f l e x i o n = 0

i f ( up down > 90 and up down < 180) : #down

f l e x i o n = i n t ( math . d e g r e e s ( armd . z a x i s . a n g l e ( hand . z a x i s ) ) )

e x t e n s i o n = 0

# w r i s t p i t c h

i f ( l e f t r i g h t > 0 and l e f t r i g h t < 90) : # l e f t

a b d u c t i o n = 0

a d d u c t i o n = i n t ( math . d e g r e e s ( armd . x a x i s . a n g l e ( hand . x a x i s ) ) )

i f ( l e f t r i g h t > 90 and l e f t r i g h t < 180) : # l e f t

a b d u c t i o n = i n t ( math . d e g r e e s ( armd . x a x i s . a n g l e ( hand . x a x i s ) ) )

a d d u c t i o n = 0

D y n a e x t e n s i o n = 150+ e x t e n s i o n

D y n a f l e x i o n = 150− f l e x i o n

D y n a a b d u c t i o n = 150+ a b d u c t i o n

D y n a a d d u c t i o n = 150− a d d u c t i o n

i f ( D y n a e x t e n s i o n > 180) : #195

D y n a e x t e n s i o n = 180

i f ( D y n a f l e x i o n < 85) : # 76 /77

D y n a f l e x i o n = 85

i f ( D y n a a b d u c t i o n > 190) : #205
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D y n a a b d u c t i o n = 190

i f ( D y n a a d d u c t i o n < 105) : #95

D y n a a d d u c t i o n = 105

w r i s t p i t c h = 150

i f ( a b d u c t i o n >0) : # i f o r i e n t a t i o n i s towards thumb

w r i s t p i t c h = D y n a a b d u c t i o n

e l i f ( a d d u c t i o n >0) : # i f o r i e n t a t i o n i s away from thumb

w r i s t p i t c h = D y n a a d d u c t i o n

w r i s t r o l l = 150

i f ( e x t e n s i o n >0) :

w r i s t r o l l = D y n a e x t e n s i o n # bends t h e hand backward and up

e l i f ( f l e x i o n >0) :

w r i s t r o l l = D y n a f l e x i o n # bends t h e hand forward and up

# g r i p p e r

t h u m b r o t a t i o n = thumb . m a t r i x . t o e u l e r ( )

r o t = ( np . d e g r e e s ( l i s t ( thumb . m a t r i x b a s i s . t o q u a t e r n i o n ( ) . t o e u l e r ( ) ) ) )

thumbopen = i n t ( r o t [ 2 ] ) +45

i f ( thumbopen < 0 ) :

thumbopen = 0

i f ( thumbopen > 105 ) :

thumbopen = 105

armYaw = s t r ( armYaw )

s h o u l d e r P i t c h = s t r ( i n t ( s h o u l d e r P i t c h ) )

s h o u l d e r R o l l = s t r (180− i n t ( s h o u l d e r R o l l ) )

e l b o w P i t c h = s t r ( i n t ( e l b o w P i t c h ) )

forearmYaw = s t r ( i n t ( forearmYaw ) )

w r i s t p i t c h = s t r ( i n t ( w r i s t p i t c h ) )

w r i s t r o l l = s t r ( i n t ( w r i s t r o l l ) )

thumbopen = s t r ( thumbopen )

c u r r e n t F r a m e = i n t ( bpy . c o n t e x t . s c e n e . f r a m e c u r r e n t )

v a l = s t r ( s h o u l d e r P i t c h +” , ”+

s h o u l d e r R o l l +” , ”+armYaw+

” , ”+ e l b o w P i t c h +” , ”+forearmYaw+

” , ”+ w r i s t p i t c h +” , ”+ w r i s t r o l l +

” , ”+thumbopen+” , ”+ s t r ( c u r r e n t F r a m e ) )

p r i n t ( v a l )

# s e r i a l l y send v a l u e s

s e r . w r i t e ( ( v a l ) . encode ( ’UTF−8 ’ ) )

def f rameChange ( p a s s e d S c e n e ) :

sendAng le s ( )

bpy . app . h a n d l e r s . f r a m e c h a n g e p r e . append ( frameChange )
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E.2 Blender: Exporting Graphs from Graph Editor

import bpy

import pandas as pd

import math

from math import d e g r e e s

import numpy as np

from m a t h u t i l s import V ec to r

import os

os . sys tem ( ’ c l s ’ )

def f indAnglesBe tweenTwoVec to r s1 ( v1s , v2s ) :

d o t = np . einsum ( ’ i j k , i j k−>i j ’ , [ v1s , v1s , v2s ] , [ v2s , v1s , v2s ] )

re turn np . d e g r e e s ( np . a r c c o s ( d o t [ 0 , : ] / ( np . s q r t ( d o t [ 1 , : ] ) *np . s q r t ( d o t [ 2 , : ] ) ) ) )

c o n t e x t = bpy . c o n t e x t

ob = c o n t e x t . o b j e c t

s c e = bpy . c o n t e x t . s c e n e

ob = bpy . c o n t e x t . o b j e c t

a n i m a t i o n d a t a = [ ]

# from s t a r t o f t h e a n i m a t i o n t i l l end

f o r f in range ( s c e . f r a m e s t a r t , s c e . f r a m e e n d +1) :

# jump t o k e y f r a m e

s c e . f r a m e s e t ( f )

s h o u l d e r = ob . pose . bones . g e t ( ” s h o u l d e r ” )

arma = ob . pose . bones . g e t ( ” arma ” )

armb = ob . pose . bones . g e t ( ” armb ” )

armc = ob . pose . bones . g e t ( ” armd ” )

armd = ob . pose . bones . g e t ( ” armd ” )

hand = ob . pose . bones . g e t ( ” hand ” )

thumb = ob . pose . bones . g e t ( ” thumb . 0 0 1 ” )

s h o u l d e r x a n g l e = math . d e g r e e s ( V e c t o r ( ( 1 , 0 , 0 ) ) . a n g l e ( s h o u l d e r . t a i l − s h o u l d e r . head ) )

s h o u l d e r y a n g l e = math . d e g r e e s ( V e c t o r ( ( 0 , 1 , 0 ) ) . a n g l e ( s h o u l d e r . t a i l − s h o u l d e r . head ) )

s h o u l d e r z a n g l e = math . d e g r e e s ( Ve c to r ( ( 0 , 0 , 1 ) ) . a n g l e ( s h o u l d e r . t a i l − s h o u l d e r . head ) )

v1 = s h o u l d e r . t a i l − s h o u l d e r . head

v2 = arma . head − arma . t a i l

s h o u l d e r t o a r m = v1 . a n g l e ( v2 )

v1 = armb . head − armb . t a i l

v2 = armc . head − armc . t a i l

elbow = v2 . a n g l e ( v1 )

v1 = armd . t a i l − armd . head

v2 = hand . head − hand . t a i l

w r i s t = v1 . a n g l e ( v2 )

# r o t a t i o n da ta : [X , Y , Z ]



122

r o t d a t a = [ ]

r o t d a t a . append ( f )

f o r b in bpy . c o n t e x t . s c e n e . o b j e c t s . a c t i v e . pose . bones :

i f b . name in [ ” hand ” ] : # ,” armb ” ,” armc ” ,” armd ” ,” hand ” ,” I K T a r g e t ”] :

# use t h e decompose method

loc , r o t , s c a = b . m a t r i x b a s i s . decompose ( )

# or use t h e t o q u a t e r n i o n method

r o t = np . d e g r e e s ( l i s t ( b . m a t r i x b a s i s . t o q u a t e r n i o n ( ) . t o e u l e r ( ) ) )

r o t d a t a . append ( r o t [ 0 ] )

r o t d a t a . append ( r o t [ 1 ] )

r o t d a t a . append ( r o t [ 2 ] )

a n i m a t i o n d a t a . append ( r o t d a t a )

d f = pd . DataFrame ( a n i m a t i o n d a t a , columns =[ ’ Frame ’ , ’ arma : e u l e r X’ , ’ arma : e u l e r Y’ , ’ arma : e u l e r Z ’

, ’ armb : e u l e r X’ , ’ armb : e u l e r Y’ , ’ armb : e u l e r Z ’

, ’ armc : e u l e r X’ , ’ armc : e u l e r Y’ , ’ armc : e u l e r Z ’

, ’ armd : e u l e r X’ , ’ armd : e u l e r Y’ , ’ armd : e u l e r Z ’

, ’ hand : e u l e r X’ , ’ hand : e u l e r Y’ , ’ hand : e u l e r Z ’

, ’ IK T a r g e t : e u l e r X’ , ’ IK T a r g e t : e u l e r Y’ , ’ IK T a r g e t : e u l e r Z ’ ] )

p r i n t ( ” making csv ” , os . getcwd ( ) )

p r i n t ( ” shape o f d f ” , d f . shape )

d f . t o c s v ( ’ a n i m a t i o n d a t a . csv ’ , i n d e x = F a l s e )



123

E.3 Arbotix-M: Dynamixel Actuation and Motor Feedback

# i n c l u d e <ax12 . h>

# i n c l u d e <B i o l o i d C o n t r o l l e r . h>

# i n c l u d e <Wire . h>

/ / i d

/ / 10 MX−106AT s h o u l d e r p i t c h

/ / 11 MX−64AT s h o u l d e r r o l l

/ / 12 MX−64AT arm yaw

/ / 13 MX−64AT e l b o w p i t c h

/ / 14 Ax−18A forearm yaw

/ / 15 Ax−18A w r i s t p i t c h

/ / 16 Ax−18A w r i s t r o l l

/ / 17 Ax−18A g r i p p e r

# d e f i n e MX GOAL POSITION L 30

# d e f i n e MX GOAL POSITION H 31

# d e f i n e MX GOAL SPEED L 32

# d e f i n e MX GOAL SPEED H 33

# d e f i n e MX TORQUE LIMIT L 34

# d e f i n e MX TORQUE LIMIT H 35

# d e f i n e MX PRESENT POSITION L 36

# d e f i n e MX PRESENT POSITION H 37

# d e f i n e MX PRESENT SPEED L 38

# d e f i n e MX PRESENT SPEED H 39

# d e f i n e MX PRESENT LOAD L 40

# d e f i n e MX PRESENT LOAD H 41

# d e f i n e MX PRESENT VOLTAGE 42

# d e f i n e MX PRESENT TEMPERATURE 43 / / AX−18A s e r v o s do n o t have t h i s r e g i s t e r

# d e f i n e MX CURRENT 68 / / AX−18A s e r v o s do n o t have t h i s r e g i s t e r

i n t pos = 0 ; / / v a r i a b l e t o s t o r e t h e s e r v o p o s i t i o n

i n t i ncomingByte = 0 ; / / f o r incoming s e r i a l da ta

S t r i n g d a t a = ” ” ;

S t r i n g s h o u l d e r p i t c h = ” ” ;

i n t s h o u l d e r P i t c h S e r v o ;

i n t s h o u l d e r P i t c h D e g r e e s ;

S t r i n g s h o u l d e r r o l l = ” ” ;

i n t s h o u l d e r R o l l S e r v o ;

i n t s h o u l d e r R o l l D e g r e e s ;

S t r i n g arm yaw = ” ” ;

i n t armYawServo ;

i n t armYawDegrees ;

S t r i n g e l b o w p i t c h = ” ” ;

i n t e l b o w P i t c h S e r v o ;

i n t e l b o w P i t c h D e g r e e s ;

S t r i n g fo rea rm yaw = ” ” ;
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i n t forearmYawServo ;

i n t forearmYawDegrees ;

S t r i n g w r i s t p i t c h = ” ” ;

i n t w r i s t P i t c h S e r v o ;

i n t w r i s t P i t c h D e g r e e s ;

S t r i n g w r i s t r o l l = ” ” ;

i n t w r i s t R o l l S e r v o ;

i n t w r i s t R o l l D e g r e e s ;

S t r i n g t h u m b t i p = ” ” ;

i n t e n d G r i p p e r S e r v o ;

i n t e n d G r i p p e r D e g r e e s ;

S t r i n g frame num = ” ” ;

i n t framenum ;

i n t t e m p s h o u l d e r P i t c h D e g r e e s = 9 0 ;

i n t t e m p s h o u l d e r R o l l D e g r e e s = 9 7 ; / / s e t t o 94 i n r e s t pose

i n t temparmYawDegrees = 180 ;

i n t t e m p e l b o w P i t c h D e g r e e s = 180 ;

i n t tempforearmYawDegrees = 150 ;

i n t t e m p w r i s t P i t c h D e g r e e s = 150 ;

i n t t e m p w r i s t R o l l D e g r e e s = 150 ;

i n t t e m p e nd G r i p p e r D e g re e s = 150 ;

i n t r e q u i r e d D i f f e r e n c e = 1 ;

f l o a t v o l t a g e ;

i n t v o l t ;

i n t g o a l p o s i t i o n ;

i n t p r e s e n t p o s i t i o n ;

i n t c u r r e n t ;

i n t l o a d ;

i n t s p e e d r e g ;

void s e t u p ( )

{

S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

Wire . b e g i n ( ) ;

Wire . s e t C l o c k ( 4 0 0 0 0 0 ) ;

/ / t u r n i n g t o r q u e on f o r motors

TorqueOn ( 1 0 ) ;

TorqueOn ( 1 1 ) ;

TorqueOn ( 1 2 ) ;

TorqueOn ( 1 3 ) ;

TorqueOn ( 1 4 ) ;

TorqueOn ( 1 5 ) ;

TorqueOn ( 1 6 ) ;

TorqueOn ( 1 7 ) ;

/ / s e t t i n g r e s t p o s t i o n s f o r t h e arm

S e t P o s i t i o n ( 1 0 , 3 0 7 2 ) ;

S e t P o s i t i o n ( 1 1 , 3 0 0 8 ) ;
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S e t P o s i t i o n ( 1 2 , 2 0 4 8 ) ;

S e t P o s i t i o n ( 1 3 , 2 0 4 8 ) ;

S e t P o s i t i o n ( 1 4 , 5 1 2 ) ;

S e t P o s i t i o n ( 1 5 , 5 1 2 ) ;

S e t P o s i t i o n ( 1 6 , 5 1 2 ) ;

S e t P o s i t i o n ( 1 7 , 5 1 2 ) ;

d e l a y ( 1 0 0 ) ; / / w a i t f o r s e r v o t o move

}

void l oop ( )

{

i f ( S e r i a l . a v a i l a b l e ( ) > 0 ){

/ / S e r i a l . p r i n t l n (” S e r i a l a v a i l a b l e ! ” ) ;

S t r i n g incoming = r e a d S t r i n g ( ) ;

/ / s u b s t r i n g s f o r a s s i g n i n g v a l u e s t o each Dynamixel

s h o u l d e r p i t c h = g e t V a l u e ( incoming , ’ , ’ , 0 ) ;

s h o u l d e r r o l l = g e t V a l u e ( incoming , ’ , ’ , 1 ) ;

arm yaw = g e t V a l u e ( incoming , ’ , ’ , 2 ) ;

e l b o w p i t c h = g e t V a l u e ( incoming , ’ , ’ , 3 ) ;

fo rea rm yaw = g e t V a l u e ( incoming , ’ , ’ , 4 ) ;

w r i s t p i t c h = g e t V a l u e ( incoming , ’ , ’ , 5 ) ;

w r i s t r o l l = g e t V a l u e ( incoming , ’ , ’ , 6 ) ;

t h u m b t i p = g e t V a l u e ( incoming , ’ , ’ , 7 ) ;

frame num = g e t V a l u e ( incoming , ’ , ’ , 8 ) ;

framenum = frame num . t o I n t ( ) ;

/ / 10

s h o u l d e r P i t c h D e g r e e s = s h o u l d e r p i t c h . t o I n t ( ) ;

s h o u l d e r P i t c h S e r v o = map ( s h o u l d e r P i t c h D e g r e e s , 0 , 180 , 4095 , 2048) ;

/ / 11

s h o u l d e r R o l l D e g r e e s = s h o u l d e r r o l l . t o I n t ( ) ;

s h o u l d e r R o l l S e r v o = map ( s h o u l d e r R o l l D e g r e e s , 0 , 90 , 2048 , 3008) ;

/ / 12

armYawDegrees = arm yaw . t o I n t ( ) ;

armYawServo = map ( armYawDegrees , 0 , 360 , 0 , 4095) ;

/ / 13

e l b o w P i t c h D e g r e e s = e l b o w p i t c h . t o I n t ( ) ;

e l b o w P i t c h S e r v o = map ( e l b o w P i t c h D e g r e e s , 0 , 360 , 0 , 4095) ;

/ / 14

forearmYawDegrees = forea rm yaw . t o I n t ( ) ;

forearmYawServo = map ( forearmYawDegrees , 0 , 160 , 207 , 820) ;

/ / 15

w r i s t P i t c h D e g r e e s = w r i s t p i t c h . t o I n t ( ) ;

w r i s t P i t c h S e r v o = map ( w r i s t P i t c h D e g r e e s , 105 , 190 , 274 , 700) ;

/ / 16

w r i s t R o l l D e g r e e s = w r i s t r o l l . t o I n t ( ) ;

w r i s t R o l l S e r v o = map ( w r i s t R o l l D e g r e e s , 85 , 180 , 257 , 605) ;

/ / 17

e n d G r i p p e r D e g r e e s = t h u m b t i p . t o I n t ( ) ;

e n d G r i p p e r S e r v o = map ( endGr ippe rDegree s , 0 , 1 0 5 , 3 4 0 , 5 9 5 ) ;
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i f ( abs ( s h o u l d e r P i t c h D e g r e e s − t e m p s h o u l d e r P i t c h D e g r e e s ) > r e q u i r e d D i f f e r e n c e && s h o u l d e r P i t c h D e g r e e s < 177

&& s h o u l d e r P i t c h D e g r e e s > 3){

t e m p s h o u l d e r P i t c h D e g r e e s = s h o u l d e r P i t c h D e g r e e s ;

S e t P o s i t i o n ( 1 0 , s h o u l d e r P i t c h S e r v o ) ;

}

i f ( abs ( s h o u l d e r R o l l D e g r e e s − t e m p s h o u l d e r R o l l D e g r e e s ) > r e q u i r e d D i f f e r e n c e && s h o u l d e r R o l l D e g r e e s < 89 &&

s h o u l d e r R o l l D e g r e e s > 3){

t e m p s h o u l d e r R o l l D e g r e e s = s h o u l d e r R o l l D e g r e e s ;

S e t P o s i t i o n ( 1 1 , s h o u l d e r R o l l S e r v o ) ;

}

i f ( abs ( armYawDegrees − temparmYawDegrees ) > r e q u i r e d D i f f e r e n c e && armYawDegrees < 270 && armYawDegrees >

90){

temparmYawDegrees = armYawDegrees ;

S e t P o s i t i o n ( 1 2 , armYawServo ) ; / / armYawServo

}

i f ( abs ( e l b o w P i t c h D e g r e e s − t e m p e l b o w P i t c h D e g r e e s ) > r e q u i r e d D i f f e r e n c e && e l b o w P i t c h D e g r e e s > 180 &&

e l b o w P i t c h D e g r e e s < 280){

t e m p e l b o w P i t c h D e g r e e s = e l b o w P i t c h D e g r e e s ;

S e t P o s i t i o n ( 1 3 , e l b o w P i t c h S e r v o ) ;

}

i f ( abs ( forearmYawDegrees − tempforearmYawDegrees ) > r e q u i r e d D i f f e r e n c e ){

tempforearmYawDegrees = forearmYawDegrees ;

S e t P o s i t i o n ( 1 4 , forearmYawServo ) ;

}

i f ( abs ( w r i s t P i t c h D e g r e e s − t e m p w r i s t P i t c h D e g r e e s ) > r e q u i r e d D i f f e r e n c e && w r i s t P i t c h D e g r e e s > 100 &&

w r i s t P i t c h D e g r e e s < 200){

t e m p w r i s t P i t c h D e g r e e s = w r i s t P i t c h D e g r e e s ;

S e t P o s i t i o n ( 1 5 , w r i s t P i t c h S e r v o ) ;

}

i f ( abs ( w r i s t R o l l D e g r e e s − t e m p w r i s t R o l l D e g r e e s ) > r e q u i r e d D i f f e r e n c e && w r i s t R o l l D e g r e e s > 80 &&

w r i s t R o l l D e g r e e s < 195){

t e m p w r i s t R o l l D e g r e e s = w r i s t R o l l D e g r e e s ;

S e t P o s i t i o n ( 1 6 , w r i s t R o l l S e r v o ) ;

}

i f ( abs ( e n d G r i p p e r D e g r e e s − t e m p e n dG r i p p e r D e g r ee s ) > r e q u i r e d D i f f e r e n c e && e n d G r i p p e r D e g r e e s > 0 &&

e n d G r i p p e r D e g r e e s < 105){

t e m p e n dG r i p p e r D e g re e s = e n d G r i p p e r D e g r e e s ;

S e t P o s i t i o n ( 1 7 , e n d G r i p p e r S e r v o ) ;

}

computeMotorFeedback ( 1 0 ) ;

computeMotorFeedback ( 1 1 ) ;

computeMotorFeedback ( 1 2 ) ;

computeMotorFeedback ( 1 3 ) ;

computeMotorFeedback ( 1 4 ) ;

computeMotorFeedback ( 1 5 ) ;

computeMotorFeedback ( 1 6 ) ;

computeMotorFeedback ( 1 7 ) ;

}

}

void computeMotorFeedback ( i n t i d ){

v o l t a g e = a x 1 2 G e t R e g i s t e r ( id , AX PRESENT VOLTAGE , 1 ) / 1 . 0 ;

v o l t = v o l t a g e ;
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g o a l p o s i t i o n = a x 1 2 G e t R e g i s t e r ( id , MX GOAL POSITION L , 2 ) ;

p r e s e n t p o s i t i o n = a x 1 2 G e t R e g i s t e r ( id , MX PRESENT POSITION L , 2 ) ;

c u r r e n t = a x 1 2 G e t R e g i s t e r ( id , MX CURRENT, 2 ) ;

l o a d = a x 1 2 G e t R e g i s t e r ( id , MX PRESENT LOAD L , 2 ) ;

s p e e d r e g = a x 1 2 G e t R e g i s t e r ( id , MX PRESENT SPEED L , 2 ) ;

sendMotorFeedback ( id , v o l t , g o a l p o s i t i o n , p r e s e n t p o s i t i o n , c u r r e n t , load , s p e e d r e g ) ;

}

void sendMotorFeedback ( i n t id , i n t v o l t , i n t g o a l p o s i t i o n , i n t p r e s e n t p o s i t i o n , i n t c u r r e n t , i n t load , i n t s p e e d r e g ){

Wire . b e g i n T r a n s m i s s i o n ( 8 ) ;

Wire . w r i t e ( i d ) ;

Wire . w r i t e ( v o l t ) ;

Wire . w r i t e ( h ig h B y t e ( g o a l p o s i t i o n ) ) ;

Wire . w r i t e ( lowByte ( g o a l p o s i t i o n ) ) ;

Wire . w r i t e ( h ig h B y t e ( p r e s e n t p o s i t i o n ) ) ;

Wire . w r i t e ( lowByte ( p r e s e n t p o s i t i o n ) ) ;

Wire . w r i t e ( h ig h B y t e ( c u r r e n t ) ) ;

Wire . w r i t e ( lowByte ( c u r r e n t ) ) ;

Wire . w r i t e ( h ig h B y t e ( l o a d ) ) ;

Wire . w r i t e ( lowByte ( l o a d ) ) ;

Wire . w r i t e ( h ig h B y t e ( s p e e d r e g ) ) ;

Wire . w r i t e ( lowByte ( s p e e d r e g ) ) ;

Wire . w r i t e ( h ig h B y t e ( framenum ) ) ;

Wire . w r i t e ( lowByte ( framenum ) ) ;

Wire . e n d T r a n s m i s s i o n ( ) ;

}

S t r i n g g e t V a l u e ( S t r i n g da t a , char s e p a r a t o r , i n t i n d e x )

{

i n t found = 0 ;

i n t s t r I n d e x [ ] = {0 , −1};

i n t maxIndex = d a t a . l e n g t h ( ) −1;

f o r ( i n t i =0 ; i<=maxIndex && found<=i n d e x ; i ++){

i f ( d a t a . c ha rA t ( i ) == s e p a r a t o r | | i ==maxIndex ){

found ++;

s t r I n d e x [ 0 ] = s t r I n d e x [ 1 ] + 1 ;

s t r I n d e x [ 1 ] = ( i == maxIndex ) ? i +1 : i ;

}

}

re turn found>i n d e x ? d a t a . s u b s t r i n g ( s t r I n d e x [ 0 ] , s t r I n d e x [ 1 ] ) : ” ” ;

}

S t r i n g r e a d S t r i n g ( ){

S t r i n g i n S t r i n g =” ” ;

char i n Ch a r ;

whi le ( S e r i a l . a v a i l a b l e ( )>0){

i n Ch a r =( char ) S e r i a l . r e a d ( ) ;

i n S t r i n g += i nC ha r ;

d e l a y ( 1 ) ;

}

re turn i n S t r i n g ;

}

i n t CheckCur ren t ( i n t i d ){
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i n t c u r r e n t = ( a x 1 2 G e t R e g i s t e r ( id , 68 , 2 ) ) ;

re turn c u r r e n t ;

}

i n t CheckVol tage ( i n t i d ){

f l o a t v o l t a g e = ( a x 1 2 G e t R e g i s t e r ( id , AX PRESENT VOLTAGE , 1 ) ) / 1 0 . 0 ;

i f ( v o l t a g e < 1 0 . 0 ){

Relax ( i d ) ;

whi le ( 1 ) ;

re turn −1;

}

i f ( v o l t a g e >= 1 0 . 0 ){

re turn v o l t a g e ;

}

}
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E.4 Arduino: Receiving I2C communication (Motor Feedback)

# inc lude<Wire . h>

b y t e r e c e i v e d v a l ;

void s e t u p ( ){

Wire . b e g i n ( 8 ) ;

Wire . s e t C l o c k ( 4 0 0 0 0 0 ) ;

Wire . onRece ive ( r e c e i v e E v e n t ) ;

S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

}

void l oop ( ){

d e l a y ( 1 0 0 ) ;

}

/ / 14 B y t e s o f Data

void r e c e i v e E v e n t ( i n t howMany ){

i f ( howMany == 14){

i n t r e s u l t ;

r e s u l t = Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;
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r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ;

S e r i a l . p r i n t ( ” , ” ) ;

r e s u l t = Wire . r e a d ( ) ;

r e s u l t <<=8;

r e s u l t |= Wire . r e a d ( ) ;

S e r i a l . p r i n t ( r e s u l t ) ; S e r i a l . p r i n t l n ( ” . ” ) ;

}

}
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